
Some

Unlikely Intersections

Beyond

André-Oort
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I.

Diophantine geometry in o-minimal structures

Result (+Alex Wilkie) about the distribution
of rational points on a “definable set”.

II.

Diophantine geometry via o-minimal structures

A strategy proposed by Umberto Zannier in the
context of the Manin-Mumford conjecture
(Raynaud’s Thm).

Some cases of the André-Oort conjecture,
some cases of the Zilber-Pink conjecture.

+ Zannier, Masser-Zannier, JP, + Habegger,
+Tsimerman, others.

Various uses of o-minimality.
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I.

Height of rational points

H(a/b) = max(|a|, |b|), (a, b) = 1,

H(q1, . . . , qn) = max(H(q1), . . . , H(qn)).

Definition. The algebraic part of Z ⊂ Rn is

Alg(Z) =
⋃
A

over all connected positive dimensional semi-

algebraic A ⊂ Z.

Here: a semi-algebraic set in Rn is a finite

union of sets, each defined by equations

Fi(x1, . . . , xn) = 0, i = 1, . . . , k,

Gj(x1, . . . , xn) > 0, j = 1, . . . , h

where Fi, Gj ∈ R[X1, . . . , Xn].
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Counting rational points

Idea: A “reasonable” set Z ⊂ Rn has “few”
rational points outside its algebraic subset:

Theorem. (+Alex Wilkie) Let Z ⊂ Rn be a
set that is definable in an o-minimal structure
over R, and ε > 0. Then

N(Z −Alg(Z), T ) ≤ c(Z, ε)T ε.

The “algebraic subset” Alg(Z) of a set can be
viewed as a (weak) analogue of Sp(V ).

Refinement. The same for algebraic points
of some bounded degree k:

Z ⊂ Rn, Nk(Z, T ) =

#{(x1, . . . , xn) ∈ Z : [Q(xi) : Q] ≤ k,H(xi) ≤ T},

Nk(Z −Alg(Z), T ) ≤ c(Z, k, ε)T ε.
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Further refinement

The theorem yields more information about
how much of Alg(Z) we need to remove:

Theorem. Let Z ⊂ Rn be definable, ε > 0.
Then Z(Q, T ) is contained in at most c(Z, ε)T ε

blocks coming from finitely many (depending
on ε) block families.

Definition. A block is a cell that is contained
in a semi-algebraic cell of same dimension.

* a block of dimension 0 is a point

* a block of positive dimension ⊂ Alg(Z)

* Z(k, T ) in c(Z, k, ε)T ε blocks.
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Wilkie’s conjecture

In general, this result cannot be much improved.

In particular, examples (in Ran) show that one

cannot replace c(Z, ε)T ε by

c(Z)( logT )C.

Wilkie’s conjecture. For Z ⊂ Rn definable in

Rexp one can.

Partial results:

Curves (Butler, Jones-Thomas (+Miller))

Certain surfaces (Butler, Jones-Thomas)
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II.

Umberto Zannier proposed: strategy for a new

proof of Manin-Mumford conjecture (Raynaud’s

theorem) for abelian varieties A/Q.

Same strategy has wider applicability.

Sketch first for multiplicative MM (torsion case

of theorem of M. Laurent).
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1. The multiplicative MM

Algebraic subvariety V ⊂ (C∗)n:

V = {x ∈ (C∗)n : Fi(x) = 0, i = 1, . . . ,m}

where C∗ = C − {0} as multiplicative group

(coordinate-wise multiplication on (C∗)n).

Consider: torsion points on V = points whose

coordinates are roots of unity.

“Conjecture”: V contains only finitely many

torsion points unless V contains a subtorus

of positive dimension or translate thereof by a

torsion point (“torsion coset”).

Subtorus: equations like: x2y3z = 1 in (C∗)3.

Torsion coset: eqs like: x2y3z = exp(2πi/7).
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“Conjecture”: V ⊂ (C∗)n contains only finitely

many torsion points unless V contains a torus

coset of positive dimension.

Observe:

1. Torsion cosets of positive dimension contain

infinitely many rational points

2. A torsion point is a torsion coset of the

trivial subgroup of (C∗)n

“Refined conjecture”: Finitely many torsion

cosets contained in V contain all the torsion

points in V . I.e. V has only finitely many

maximal torsion cosets.
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Proof. Since torsion points are algebraic, we

can assume V is defined over a number field.

Start with uniformisation

exp : Cn → (C∗)n,

exp(z1, . . . , zn) = (exp(z1), . . . , exp(zn)).

Real coordinates on Cn: Re(z), Im(z)/2π. Then

pre-images of torsion points

(..., qjπi, . . .), qj ∈ Q

are rational points. The uniformization is

2πiZ−periodic,

so cannot be definable. But its restriction

to a fundamental domain F is definable in

Ran, exp (need exp on R and sin, cos on [0,2π]).

Let

Z = exp−1(V ) ∩ F.
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Opposing bounds

Count rational points in Z = exp−1(V ) ∩ F.

Archimedean upper bound for Z by PW:

N(Z −Alg(Z), T ) ≤ c(Z, ε)T ε.

Galois lower bound on V side. A torsion point

P of order T in (C∗)n has degree

φ(T ) >> T/ logT,

(Euler φ-function). A fixed positive proportion

of conjugates lie again on V ; so if P ∈ V then

N(Z, T ) ≥ c(V )T/ logT

Incompatible bounds: take ε = 1/2 (say).

So either the orders of torsion points on V are

bounded, giving finiteness, or Alg(Z) 6= ∅.
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The algebraic part

Next: characterise Alg(Z). Real → complex.

Alg( exp−1(V )) =
⋃

complex algebraic W

Let W irreducible complex algebraic variety with

W ⊂ exp−1(V ) ⊂ Cn

(won’t be contained in Z). Let

zi ∈ C(W )

be induced by the coordinate functions, then

exp(zi)

as functions on W satisfy the equations of V :
Dependent exponentials of algebraic fns.

Ax (1971): Proved Schanuel conjecture in a
differential field (i.e. for functions).

By “Ax-Lindemann-Weierstrass” = part of
Ax-Schanuel corresponding to LW, the zi are
linearly dependent over Q modulo constants.
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Ax-Lindemann-Weierstrass

Ax-L-W theorem: Suppose ai ∈ C(W ) are
elements in some algebraic function field. The
functions

exp(ai)

on W are algebraically independent over C
unless the ai are linearly dependent over Q
modulo constants (i.e.

∑
qiai = c ∈ C, qi ∈ Q,

not all =0) .

is equivalent (more generally) to:

Theorem (“Ax-L-W”): Let V ⊂ (C∗)n be
algebraic. A maximal complex algebraic variety
W ⊂ exp−1(V ) is a translate of a rational linear
subspace.

Conclude:

Alg(exp−1(V )) =
⋃

exp−1 subtorus cosets in V

(not only torsion cosets).
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Summary/conclusion

Transcendental uniformization, definable on a

fundamental domain:

rational point↔ torsion point

“Complexity” (order) of torsion point:

upper bound << lower bound

Characterization of “algebraic part” (Ax-L-W):

maximal algebraic ≈ subtorus coset

Finiteness for the number of subtori T having

a coset aT ⊂ V (elementary/o-minimality).

Finally: an inductive argument to conclude:

tor csts aT ⊂ V ↔ tor pts a ∈ V ′ ⊂ (C∗)/T.

Completes proof .
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2. Andre-Oort Conjecture

André-Oort conjecture (‘89/‘95): analogue of
MM for Shimura varieties X. Examples:

* Moduli space of pp abelian vars given dim
* Hilbert modular surfaces, H modular varieties
* Shimura curves: quotient of H by a discrete
subgroup of SL2(R) coming from an indefinite
quaternion algebra over Q, gen modular curves.

Conjecture. Let V ⊂ X. Then V contains
only finitely many “special points” unless it
contains a “special subvariety” of pos. dim.

So: “special pt” ∼ torsion pt, “sp subv.” ∼ ...

Refined version: All “special points” ∈ V lie
in finitely many “special subvarieties” ⊂ V .

Full proof announced by Klingler-Ullmo-Yafaev
on GRH. Few cases known unconditionally.
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André-Oort for Cn

C = Y (1) as j-line parameterising elliptic curves.

j(τ): j-invariant of E ↔ Z⊕ Zτ , SL2(Z)-inv.

Special point in C = the j invariant of a CM
elliptic curve = elliptic curve with extra endo-
morphisms. Special point in Cn: tuple.

André-Oort Conjecture for Cn: V ⊂ Cn has
finitely many special points unless it contains
a “special subvariety” of positive dimension
(≈ product of modular curves).

Edixhoven (2005) under GRH for CM fields.
For n = 2, André unconditionally (1998).
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Sketch proof.

Reprise mult MM proof with j instead of exp.

Uniformisation:

j : Hn → Cn,

j(τ1, . . . , τn) = (j(τ1), . . . , j(τn)).

SL2(Z)n − invariant, τ 7→
aτ + b

cτ + d

Definability of j on F , in Ran exp, despite its
essential singularity in cusp, by q-expansion,
or Peterzil+Starchenko (’04) result for ℘(z, τ).
So too j on Fn.

j(τ) is special ⇐⇒ τ is imaginary quadratic.

By Complex Multiplication

[Q(j(τ)) : Q] = h(D)
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Opposing bounds

Definability + bounded degree: Upper bound.

N2(Z −Alg(Z), T ) ≤ c(Z, ε)T ε.

Lower bound: [Q(j(τ)) : Q] = h(D). Siegel:

h(D) ≥ c(η)|D|1/2−η, η > 0,

unconditional (though ineffective). And as

H(τ) << D, if j(τ1, . . . , τn) ∈ V , Di = D(τ) and

D = maxDi get

N2(Z) ≥ c(V )D1/4 (η = 1/4 say ).

Incompatible bounds.

Study Alg(Z). Last ingredient:
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Ax-Lindemann-Weierstrass for j

If g ∈ GL+
2 (Q) (+ for det > 0, to preserve H),

j(τ), j(gτ), gτ =
aτ + b

cτ + d

are related by a modular polynomial,

ΦN(j(τ), j(gτ)) = 0,

and so are algebraically dependent (over Q).

Definition. Algebraic functions ai ∈ C(W ) will
be called geodesically independent if they
are all non-constant and there are no relations
ai = gaj, i 6= j as above.

Need: all ai take values in H for some point
of W so that j(ai) are locally functions on W .

Theorem (Ax-L-W for j): Suppose ai are
geodesically independent algebraic functions.
Then j(ai) are algebraically independent /C.
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Definition. A weakly special subvariety of
Hn is W ∩Hn where W is defined by equations

zik = gkzjk, gk ∈ GL+
2 (Q), k = 1, . . . , `

z`k = ck ∈ H, k = 1, . . . ,m.

It is special if all ck are quadratic.

This data determines a special subvariety

W{(ik,jk,gk)}

on the variables ik, jk.

We refer to W as being the translate by the
ck of W{(ik,jk,gk)}.

Theorem (Ax-L-W for j). Let V ⊂ Cn be
algebraic. If W is a maximal complex algebraic
variety with W ∩Hn ⊂ j−1(V ) then W is weakly
special.

Proof. Uses O-minimality plus P-Wilkie again.
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Ingredients and prospects for AO

Basic set up: Uniformisation

π : U → X, Γ− invariant.

All cases of (mixed) André-Oort look like this.
Special points in U have finite degree..

A. Definability (upper bounds): Definability
of uniformising map. Peterzil-Starchenko: for
theta functions in both sets of variables (in
Ran,exp), so for Ag,1, even as mixed Shimura
variety.

B. Lower bounds: for Galois orbits of special
points: Jacob Tsimerman (2011): Ag, g ≤ 5
unconditionally. (Also Yafaev-Ullmo).

Height of point in F (Tsimerman, for Hg).

C. Ax-Lindemann-Weierstrass: Of interest
and approachable indpt of lower bounds.

Maximal algebraic ⊂ π−1(V ) is weakly special.
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Further results

Cases of ZP – later:

1. Masser-Zannier “torsion anomalous” points

2. “unlikely” in Cn (+Habegger )

Cases of AO or “generalised” versions:

3. AOMML for Cn × E1 × . . .× Em × (C∗)`, Ei/Q

4. Hilbert modular surfaces (Daw-Yafaev 2011)

In progress:

5. Products of elliptic modular surfaces: Ln,

L = {(λ, x, y) : y2 = x(x− 1)(x− λ)}

Special point: λi special, (xi, yi) torsion.

6. Products of Shimura curves

7. Siegel modular threefold A2,1 = moduli
space of pp Abelian surfaces: (+ Tsimerman)
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3. The Zilber-Pink conjecture

A far-reaching generalization of AOMM, due
to Zilber ((C∗)n, semi-abelian), independently
(later) Pink for (mixed) Shimura varieties, also
Bombieri-Masser-Zannier proved results, made
conjectures on “unlikely intersections” in (C∗)n.

Let S[k] be the union of all algebraic subgroups
of (C∗)n of codimension at least k.

E.g. For a curve C ⊂ Gnm(C) = (C∗)n, C/C.

Conjecture. C ∩ S[2] is finite, unless C is
contained in a proper algebraic subgroup.

This is a Theorem due to BMZ, Maurin.

C ∩ S[2] consists: (x1, . . . , xn) ∈ C satisfying 2
(or more) independent multiplicative relations.

Multiplicative MM is a special case (n = 2 or
intersect with subgroups of codimension n)
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Example. Find all t ∈ C such that

(t,1 + t,1− t) ∈ C3

satisfy two independent multiplicative relations

(Cohen-Tretkoff+Zannier). Or same for

(2,3, t,1 + t,1− t) ⊂ C5.

ZP implies ML

Suppose all but 2 coordinates constant on C:

C = {(c1, . . . , cn, x, y) : f(x, y) = 0}. (assume:

ci mult. ind. o/w C ⊂ special). Two equations

xayb = c
α1
1 . . . cαnn , xcyd = c

β1
1 . . . cβnn

amounts to: solving f(x, y) = 0 in the division

group generated by c1, . . . , cn.

I.e. Although ZP involves only special subvts,

Mordell-Lang appears as a degenerate case.
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ZP for curves in Cn = Y (1)n

Conjecture. Let C/C be a curve in Cn. Then

the intersection of C with the union S[2] of all

special subvarieties of Cn of codimension ≥ 2

is finite – unless C is contained in a proper

special subvariety of Cn.

Theorem. (+Habegger) The conjecture above

is true if C is defined over Q and asymmetric.

Definition: C is asymmetric if each positive

integer appears at most once among deg(Xi|C),

up to one exception which may appear twice.

Same strategy. First “unlikely” result “beyond

AO”. Requires “Ax-log” result for j. Includes

an analogue of ML (holds for all V ⊂ Cn).
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Consider now C ⊂ Cn as Shimura variety.

S[2] = ∪ special subvarieties of codimension 2.

C ∩ S[2] consists: (x1, . . . , xn) ∈ C satisfying 2

independent modular relations (or coordinates

special).

Suppose all but 2 coordinates constant on C:

C = {(c1, . . . , cn, x, y) : f(x, y) = 0}

Φn(x, ci),Φm(y, cj) (or x and/or y = special).

...analogue of Mordell-Lang for V ⊂ Y (1)n.
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“Mordell-Lang” for Cn

Definition. Let Σ be a finite subset of C. A

point x ∈ C is called Σ-special if it is special or

in the Hecke orbit of some c ∈ Σ i.e. j−1(x) ∈
GL+

2 (Q)j−1(c).

Definition. A Σ-special subvariety is a weakly

special subvariety which contains a Σ-special

point.

Theorem. (+Philipp Habegger) Let Σ ⊂ Q be

a finite set and V ⊂ Cn a variety. Then V con-

tains only finitely many Σ-special points unless

V contains a Σ- special subvariety of positive

dimension. Moreover, V contains only finitely

many maximal Σ-special subvarieties.
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Sketch. Note that for c ∈ Q but not special,
a point σ ∈ H with j(σ) = c is transcendental
(Th. Schneider).

Fixing one such σ ∈ H, the Hecke orbit is

GL+
2 (Q)σ = {gσ : g ∈ GL+

2 (Q)}.
Take σ ∈ H with j(σ) = c for each c ∈ Σ.

Break into finitely many cases:

* Certain coords, say xk+1, . . . , xn are special.

* Other xj is in Hecke orbit of some cj ∈ Σ.

For each such case consider:

Ω = GL2(R)k × Hn−k → U = Hn → Cn,

(gi, τj) 7→ (giσi, τj) 7→ (j(giσi), j(τj))

and look for suitably “rational” points in the
preimage of Z in GL2(R)n:

Quadratic points in H, rational points in GLn(R).
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The map GLn(R) → H is fibred by copies of

SO2(R)×∆.

But we get T ε “blocks”. The map GL2(R)→ H
is semialgebraic, so image of block is a finite

union of blocks.

So T ε blocks in Ω map to T ε blocks in U .

Alg(Z) is same as before.

Lower bounds:

* Special points: same

* Orbit of c: isogeny estimates (Masser et al)

or Serre open image.
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Certain C ⊂ Cn

Sketch. What does an “unlikely intersection”

point look like?

(x1, . . . , xn) ∈ C

Cases:

(1) ΦN(xi1, xi2) = 0 and ΦM(xi3, xi4) = 0, with

xi1, xi2, xi3, xi4 distinct.

(2) ΦN(xi1, xi2) = 0,ΦM(xi2, xi3) = 0, with

xi1, xi2, xi3 distinct.

(3) xi1 = c special, ΦM(xi2, xi3) = 0, with

xi1, xi2, xi3 distinct.

(4) xi1 = c1, xi2 = c2 with xi1, xi2 distinct and

c1, c2 special reverts to AO.
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Case (2) on x1, x2, x3

Consider: Points P = (x1, x2, x3) ∈ C with

ΦN(x1, x2) = 0, and ΦM(x2, x3) = 0, where

N,M depend on P .

Uniformisation: H3 → C3 by j-function.

P as above gives rise to (τ1, τ2, τ3) ∈ H3 with

z2 = αz1, z3 = βz2

for some α, β ∈ GL+
2 (Q).

If some coordinate is constant on C we are in

“Mordell-Lang” situation: we may assume C is

not contained in any weakly special subvariety.

Need suitable “Ax-type” result:
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“Ax logarithms”

j : H → C has a multivalued inverse ` : C → H,

the “j-logarithm”.

Want: for algebraic functions ai, the `(ai) are

algebraically independent unless the ai have

modular relations, or are constant.

Theorem. Let C ⊂ C3 be irreducible curve,

τ ∈ j−1(C) ⊂ H3. Suppose a complex algebraic

hypersurface W contains a neighbourhood of

z in j−1(C). Then C is contained in a weakly

special subvariety.

Uses: André’s normality theorem (does not use

o-minimality).
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Case (2), ctd

For α, β ∈ GL+
2 (R), let

Yα,β = {(τ1, τ2, τ3) ∈ C3 : τ2 = ατ1, τ3 = βτ2}.
Yα,β is a complex algebraic curve in a family
parameterised by

GL+
2 (R)×GL+

2 (R).

Let Z = j−1(C)∩ F , definable. Also definable:

X = {(α, β) ∈ GL+
2 (R)2 : Yα,β ∩ Z 6= ∅}.

1. Each Yα,β ∩ Z is finite, otherwise, by “Ax-
log”, C would be contained in a weakly special
subvariety, contrary to assumptions.

2. O-minimality: a uniform finite bound for
(α, β) ∈ GL+

2 (R)2.

3. The intersections are then given by finitely
many functions fi defined and C1 on some
cells.
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Case (2), concluded

4. Lower bounds: an unlikely point P has
“many” Galois conjugates: i.e. gives rise to
at least cT δ points of height ≤ T on X.

Uses: height properties on curves (asymmetry
used here), isogeny estimates, ...

5. Choose ε < δ. Pila-Wilkie now provides
a finite number of definable “block families”
containing all the “blocks” occurring in the
theorem, compatible with the cells for the fi.

6. Suppose now a point P with L = max(N,M)
large. Have ≥ cLδ points in Z. But the points
Q ∈ X lie on ≤ CLε blocks. If an algebraic
curve through a point Q has fi non-constant,
we get an algebraic surface W containing Z.
Contradiction. So the fi are all constant
on the blocks, and this accounts for too few
points P . Contradiction.
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“Torsion anomalous” points

Masser-Zannier establish first cases of Pink’s

relative MM conjecture, using o-minimality.

Theorem. (M+Z) There are only finitely many

complex numbers λ 6= 0,1 such that the points

(2,
√

2(2− λ)), (3,
√

6(3− λ))

on the elliptic curve

Eλ : y2 = x(x− 1)(x− λ)

are both torsion points.

View as family of Eλ×Eλ over λ-line. The point

((2, ...), (3, ...)) describes a curve, on which one

expects only finitely many torsion points. But

the ambient abelian variety moves with λ.

For (2,
√

2(2− λ)) alone, infinitely many λ.
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4. André-Oort again

Ingredients

A. Definability: Peterzil-Starchenko Ag,1.

B. Lower bounds: Tsimerman Ag,1, g ≤ 5.

C. Ax-Lindemann-Weierstrass:

Consider Shimura variety X e.g. Ag,1. Have

π : U → X, V ⊂ X

Conjecture. (Ax-L-W): A maximal complex

algebraic W ∩ U ⊂ π−1(V ) is weakly special.

Theorem. (Ullmo-Yafaev) True if dimV = 1.
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Hilbert modular surfaces

Certain quotient of H2 by action of a discrete

arithmetic group coming from a real quadratic

field k.

π : H2 → X.

Moduli space of pp Abelian surfaces with real

multiplication: X ⊂ A2,1.

Theorem. (Daw-Yafaev) AO for HMS’s

Definability: Peterzil-Starchenko for A2,1. Lower

bounds: Edixhoven. AxLW: Ullmo-Yafaev.

Other cases of curve V in X ⊂ Ag,1, g ≤ 5

should follow similar lines.
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Siegel modular threefold

AO for moduli space of pp Abelian surfaces,

+ Jacob Tsimerman.

Siegel upper half space: J : H2 → A2,1

Definability: Peterzil-Starchenko.

Lower bound for Galois orbit: Tsimerman.

Ax-Lindemann-Weierstrass: uses o-minimality,

but not P-Wilkie.

Take V ⊂ A2,1

* dimV = 1: conclude using Ullmo-Yafaev.

* dimV = 2: ... tame complex analytic results

of Peterzil-Starchenko ...
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