Some Unlikely Intersections Beyond André-Oort

Jonathan Pila

Mathematical Institute Oxford

Recent Developments in Model theory Oléron, June 2011

1

Diophantine geometry in o-minimal structures

Result (+Alex Wilkie) about the distribution of rational points on a "definable set".

II.

Diophantine geometry via o-minimal structures

A strategy proposed by Umberto Zannier in the context of the Manin-Mumford conjecture (Raynaud's Thm).

Some cases of the **André-Oort conjecture**, some cases of the **Zilber-Pink conjecture**.

+ Zannier, Masser-Zannier, JP, + Habegger, +Tsimerman, others.

Various uses of o-minimality.

Height of rational points

$$H(a/b) = \max(|a|, |b|), \quad (a, b) = 1,$$

 $H(q_1, \dots, q_n) = \max(H(q_1), \dots, H(q_n)).$

Definition. The algebraic part of $Z \subset \mathbb{R}^n$ is

$$\mathsf{Alg}(Z) = \bigcup A$$

over all connected positive dimensional semialgebraic $A \subset Z$.

Here: a **semi-algebraic set** in \mathbb{R}^n is a finite union of sets, each defined by equations

$$F_i(x_1, ..., x_n) = 0, \quad i = 1, ..., k,$$

 $G_j(x_1, ..., x_n) > 0, \quad j = 1, ..., h$
where $F_i, G_j \in \mathbb{R}[X_1, ..., X_n].$

Counting rational points

Idea: A "reasonable" set $Z \subset \mathbb{R}^n$ has "few" rational points outside its algebraic subset:

Theorem. (+Alex Wilkie) Let $Z \subset \mathbb{R}^n$ be a set that is definable in an o-minimal structure over \mathbb{R} , and $\epsilon > 0$. Then

$$N(Z - \operatorname{Alg}(Z), T) \leq c(Z, \epsilon)T^{\epsilon}.$$

The "algebraic subset" Alg(Z) of a set can be viewed as a (weak) analogue of Sp(V).

Refinement. The same for algebraic points of some bounded degree k:

$$Z \subset \mathbb{R}^n, \quad N_k(Z,T) =$$

 $#\{(x_1,\ldots,x_n)\in Z: [\mathbb{Q}(x_i):\mathbb{Q}]\leq k, H(x_i)\leq T\},\$

$$N_k(Z - \operatorname{Alg}(Z), T) \leq c(Z, k, \epsilon) T^{\epsilon}.$$

Further refinement

The theorem yields more information about how much of Alg(Z) we need to remove:

Theorem. Let $Z \subset \mathbb{R}^n$ be definable, $\epsilon > 0$. Then $Z(\mathbb{Q}, T)$ is contained in at most $c(Z, \epsilon)T^{\epsilon}$ **blocks** coming from finitely many (depending on ϵ) block families.

Definition. A **block** is a cell that is contained in a semi-algebraic cell of same dimension.

* a block of dimension 0 is a point

* a block of positive dimension $\subset Alg(Z)$

* Z(k,T) in $c(Z,k,\epsilon)T^{\epsilon}$ blocks.

Wilkie's conjecture

In general, this result cannot be much improved.

In particular, examples (in \mathbb{R}_{an}) show that one cannot replace $c(Z, \epsilon)T^{\epsilon}$ by

$c(Z)(\log T)^C$.

Wilkie's conjecture. For $Z \subset \mathbb{R}^n$ definable in \mathbb{R}_{exp} one can.

Partial results:

Curves (Butler, Jones-Thomas (+Miller))

Certain surfaces (Butler, Jones-Thomas)

II.

Umberto Zannier proposed: strategy for a new proof of Manin-Mumford conjecture (Raynaud's theorem) for abelian varieties $A/\overline{\mathbb{Q}}$.

Same strategy has wider applicability.

Sketch first for multiplicative MM (**torsion** case of theorem of M. Laurent).

7

1. The multiplicative MM

Algebraic subvariety $V \subset (\mathbb{C}^*)^n$:

$$V = \{\mathbf{x} \in (\mathbb{C}^*)^n : F_i(\mathbf{x}) = 0, i = 1, \dots, m\}$$

where $\mathbb{C}^* = \mathbb{C} - \{0\}$ as multiplicative group (coordinate-wise multiplication on $(\mathbb{C}^*)^n$).

Consider: **torsion points** on V = points whose coordinates are roots of unity.

"Conjecture": V contains only finitely many torsion points unless V contains a subtorus of positive dimension or translate thereof by a torsion point ("torsion coset").

Subtorus: equations like: $x^2y^3z = 1$ in $(\mathbb{C}^*)^3$.

Torsion coset: eqs like: $x^2y^3z = \exp(2\pi i/7)$.

"Conjecture": $V \subset (\mathbb{C}^*)^n$ contains only finitely many torsion points **unless** V contains a torus coset of positive dimension.

Observe:

1. Torsion cosets of positive dimension contain infinitely many rational points

2. A torsion point is a torsion coset of the trivial subgroup of $(\mathbb{C}^*)^n$

"Refined conjecture": Finitely many torsion cosets contained in V contain all the torsion points in V. I.e. V has only finitely many maximal torsion cosets.

9

Proof. Since torsion points are algebraic, we can assume V is defined over a number field.

Start with **uniformisation**

 $\exp: \mathbb{C}^n \to (\mathbb{C}^*)^n,$

 $\exp(z_1,\ldots,z_n) = (\exp(z_1),\ldots,\exp(z_n)).$

Real coordinates on \mathbb{C}^n : $\operatorname{Re}(z), \operatorname{Im}(z)/2\pi$. Then pre-images of torsion points

 $(...,q_j\pi i,\ldots), \quad q_j\in\mathbb{Q}$

are rational points. The uniformization is

 $2\pi i\mathbb{Z}$ -periodic,

so cannot be **definable**. But its **restriction** to a fundamental domain F is definable in $\mathbb{R}_{an, exp}$ (need exp on \mathbb{R} and sin, cos on $[0, 2\pi]$).

Let

$$Z = \exp^{-1}(V) \cap F.$$

Opposing bounds

Count rational points in $Z = \exp^{-1}(V) \cap F$.

Archimedean upper bound for Z by PW:

$$N(Z - \operatorname{Alg}(Z), T) \leq c(Z, \epsilon)T^{\epsilon}.$$

Galois lower bound on V side. A torsion point P of order T in $(\mathbb{C}^*)^n$ has degree

 $\phi(T) >> T/\log T,$

(Euler ϕ -function). A fixed positive proportion of conjugates lie again on V; so if $P \in V$ then

$$N(Z,T) \ge c(V)T/\log T$$

Incompatible bounds: take $\epsilon = 1/2$ (say).

So either the orders of torsion points on V are bounded, giving finiteness, or $Alg(Z) \neq \emptyset$.

The algebraic part

Next: characterise Alg(Z). Real \rightarrow complex.

 $Alg(exp^{-1}(V)) = \bigcup complex algebraic W$

Let W irreducible complex algebraic variety with

$$W \subset \exp^{-1}(V) \subset \mathbb{C}^n$$

(won't be contained in Z). Let

 $\overline{z_i} \in \mathbb{C}(W)$

be induced by the coordinate functions, then

 $\exp(\overline{z_i})$

as functions on W satisfy the equations of V: **Dependent exponentials of algebraic fns.**

Ax (1971): Proved Schanuel conjecture in a differential field (i.e. for functions).

By "Ax-Lindemann-Weierstrass" = part of Ax-Schanuel corresponding to LW, the $\overline{z_i}$ are linearly dependent over \mathbb{Q} modulo constants.

Ax-Lindemann-Weierstrass

Ax-L-W theorem: Suppose $a_i \in \mathbb{C}(W)$ are elements in some algebraic function field. The functions

 $\exp(a_i)$

on W are algebraically independent over \mathbb{C} unless the a_i are linearly dependent over \mathbb{Q} modulo constants (i.e. $\sum q_i a_i = c \in \mathbb{C}, q_i \in \mathbb{Q}$, not all =0).

is **equivalent** (more generally) to:

Theorem ("Ax-L-W"): Let $V \subset (\mathbb{C}^*)^n$ be algebraic. A maximal complex algebraic variety $W \subset \exp^{-1}(V)$ is a translate of a rational linear subspace.

Conclude:

Alg $(\exp^{-1}(V)) = \bigcup \exp^{-1}$ subtorus cosets in V (not only *torsion* cosets).

Summary/conclusion

Transcendental uniformization, definable on a fundamental domain:

rational point ↔ torsion point "Complexity" (order) of torsion point: upper bound << lower bound Characterization of "algebraic part" (Ax-L-W):

maximal algebraic \approx subtorus coset

Finiteness for the number of subtori T having a coset $aT \subset V$ (elementary/o-minimality).

Finally: an inductive argument to conclude:

tor csts $aT \subset V \leftrightarrow$ tor pts $a \in V' \subset (\mathbb{C}^*)/T$. Completes proof .

2. Andre-Oort Conjecture

André-Oort conjecture ('89/'95): analogue of MM for **Shimura varieties** X. Examples:

* Moduli space of pp abelian vars given dim * Hilbert modular surfaces, H modular varieties * Shimura curves: quotient of \mathbb{H} by a discrete subgroup of $SL_2(\mathbb{R})$ coming from an indefinite quaternion algebra over \mathbb{Q} , gen modular curves.

Conjecture. Let $V \subset X$. Then V contains only finitely many **"special points"** unless it contains a **"special subvariety"** of pos. dim.

So: ''special pt'' \sim torsion pt, ''sp subv.'' $\sim \ldots$

Refined version: All "special points" $\in V$ lie in finitely many "special subvarieties" $\subset V$.

Full proof announced by Klingler-Ullmo-Yafaev on GRH. Few cases known unconditionally.

André-Oort for \mathbb{C}^n

 $\mathbb{C} = Y(1)$ as *j*-line parameterising elliptic curves.

$j(\tau)$: *j*-invariant of $E \leftrightarrow \mathbb{Z} \oplus \mathbb{Z}\tau$, $SL_2(\mathbb{Z})$ -inv.

Special point in \mathbb{C} = the *j* invariant of a CM elliptic curve = elliptic curve with extra endomorphisms. **Special point** in \mathbb{C}^n : tuple.

André-Oort Conjecture for \mathbb{C}^n : $V \subset \mathbb{C}^n$ has finitely many special points **unless** it contains a **"special subvariety"** of positive dimension (\approx product of modular curves).

Edixhoven (2005) under GRH for CM fields. For n = 2, André unconditionally (1998).

Sketch proof.

Reprise mult MM proof with j instead of exp.

Uniformisation:

$$j : \mathbb{H}^n \to \mathbb{C}^n,$$

 $j(\tau_1, \dots, \tau_n) = (j(\tau_1), \dots, j(\tau_n)).$
 $SL_2(\mathbb{Z})^n - invariant, \quad \tau \mapsto \frac{a\tau + b}{c\tau + d}$

Definability of j on F, in $\mathbb{R}_{an exp}$, despite its essential singularity in cusp, by q-expansion, or Peterzil+Starchenko ('04) result for $\wp(z,\tau)$. So too j on F^n .

 $j(\tau)$ is special $\iff \tau$ is **imaginary quadratic.**

By Complex Multiplication

$$[\mathbb{Q}(j(\tau)):\mathbb{Q}] = h(D)$$

Opposing bounds

Definability + bounded degree: **Upper bound**.

 $N_2(Z - \operatorname{Alg}(Z), T) \leq c(Z, \epsilon)T^{\epsilon}.$

Lower bound: $[\mathbb{Q}(j(\tau)) : \mathbb{Q}] = h(D)$. Siegel:

$$h(D) \ge c(\eta) |D|^{1/2 - \eta}, \quad \eta > 0,$$

unconditional (though ineffective). And as $H(\tau) \ll D$, if $j(\tau_1, \ldots, \tau_n) \in V$, $D_i = D(\tau)$ and $D = \max D_i$ get

$$N_2(Z) \ge c(V)D^{1/4}$$
 ($\eta = 1/4$ say).

Incompatible bounds.

Study Alg(Z). Last ingredient:

Ax-Lindemann-Weierstrass for j

If $g \in \operatorname{GL}_2^+(\mathbb{Q})$ (+ for det > 0, to preserve \mathbb{H}),

$$j(\tau), \quad j(g\tau), \quad g\tau = \frac{a\tau + b}{c\tau + d}$$

are related by a modular polynomial,

$$\Phi_N(j(\tau), j(g\tau)) = 0,$$

and so are algebraically dependent (over \mathbb{Q}).

Definition. Algebraic functions $a_i \in \mathbb{C}(W)$ will be called **geodesically independent** if they are all non-constant and there are no relations $a_i = ga_j, i \neq j$ as above.

Need: all a_i take values in \mathbb{H} for some point of W so that $j(a_i)$ are locally functions on W.

Theorem (Ax-L-W for j): Suppose a_i are geodesically independent algebraic functions. Then $j(a_i)$ are algebraically independent $/\mathbb{C}$. **Definition.** A weakly special subvariety of \mathbb{H}^n is $W \cap \mathbb{H}^n$ where W is defined by equations

$$z_{i_k} = g_k z_{j_k}, \quad g_k \in \mathsf{GL}_2^+(\mathbb{Q}), \quad k = 1, \dots, \ell$$

 $z_{\ell_k} = c_k \in \mathbb{H}, \quad k = 1, \dots, m.$

It is **special** if all c_k are quadratic.

This data determines a special subvariety

 $W_{\{(i_k,j_k,g_k)\}}$

on the variables i_k, j_k .

We refer to W as being the **translate** by the c_k of $W_{\{(i_k, j_k, g_k)\}}$.

Theorem (Ax-L-W for j). Let $V \subset \mathbb{C}^n$ be algebraic. If W is a maximal complex algebraic variety with $W \cap \mathbb{H}^n \subset j^{-1}(V)$ then W is weakly special.

Proof. Uses O-minimality plus P-Wilkie again.

Basic set up: Uniformisation

 $\pi: U \to X, \quad \Gamma - \text{invariant.}$

All cases of (mixed) André-Oort look like this. Special points in U have finite degree..

A. Definability (upper bounds): Definability of uniformising map. Peterzil-Starchenko: for theta functions in both sets of variables (in $\mathbb{R}_{an,exp}$), so for $\mathcal{A}_{g,1}$, even as mixed Shimura variety.

B. Lower bounds: for Galois orbits of special points: Jacob Tsimerman (2011): $\mathcal{A}_g, g \leq 5$ unconditionally. (Also Yafaev-Ullmo). Height of point in F (Tsimerman, for \mathbb{H}_g).

C. Ax-Lindemann-Weierstrass: Of interest and approachable indpt of lower bounds.

Maximal algebraic $\subset \pi^{-1}(V)$ is weakly special. 21

Further results

Cases of ZP – later:

- 1. Masser-Zannier "torsion anomalous" points
- 2. "unlikely" in \mathbb{C}^n (+Habegger)

Cases of AO or "generalised" versions:

- 3. AOMML for $\mathbb{C}^n \times E_1 \times \ldots \times E_m \times (\mathbb{C}^*)^{\ell}$, $E_i/\overline{\mathbb{Q}}$
- 4. Hilbert modular surfaces (Daw-Yafaev 2011)

In progress:

5. Products of elliptic modular surfaces: L^n ,

 $L = \{ (\lambda, x, y) : y^{2} = x(x - 1)(x - \lambda) \}$

Special point: λ_i special, (x_i, y_i) torsion.

6. Products of Shimura curves

7. Siegel modular threefold $\mathcal{A}_{2,1} = \text{moduli}$ space of pp Abelian surfaces: (+ Tsimerman)

3. The Zilber-Pink conjecture

A far-reaching generalization of AOMM, due to Zilber ($(\mathbb{C}^*)^n$, semi-abelian), independently (later) Pink for (mixed) Shimura varieties, also Bombieri-Masser-Zannier proved results, made conjectures on "unlikely intersections" in $(\mathbb{C}^*)^n$.

Let $\mathcal{S}^{[k]}$ be the union of all algebraic subgroups of $(\mathbb{C}^*)^n$ of codimension at least k.

E.g. For a curve $C \subset \mathbb{G}_{\mathsf{m}}^{n}(\mathbb{C}) = (\mathbb{C}^{*})^{n}$, C/\mathbb{C} .

Conjecture. $C \cap S^{[2]}$ is **finite**, **unless** C is contained in a proper algebraic subgroup.

This is a **Theorem** due to BMZ, Maurin.

 $C \cap \mathcal{S}^{[2]}$ consists: $(x_1, \ldots, x_n) \in C$ satisfying 2 (or more) independent multiplicative relations.

Multiplicative MM is a special case (n = 2 or n)intersect with subgroups of codimension n **Example.** Find all $t \in \mathbb{C}$ such that

$$(t, 1+t, 1-t) \in \mathbb{C}^3$$

satisfy **two** independent multiplicative relations (Cohen-Tretkoff+Zannier). Or same for

$$(2,3,t,1+t,1-t) \subset \mathbb{C}^5.$$

ZP implies ML

Suppose all but 2 coordinates constant on C: $C = \{(c_1, \ldots, c_n, x, y) : f(x, y) = 0\}$. (assume: c_i mult. ind. o/w $C \subset$ special). Two equations

$$x^a y^b = c_1^{\alpha_1} \dots c_n^{\alpha_n}, \quad x^c y^d = c_1^{\beta_1} \dots c_n^{\beta_n}$$

amounts to: solving f(x, y) = 0 in the **division** group generated by c_1, \ldots, c_n .

I.e. Although ZP involves only special subvts, Mordell-Lang appears as a degenerate case. ZP for curves in $\mathbb{C}^n = Y(1)^n$

Conjecture. Let C/\mathbb{C} be a curve in \mathbb{C}^n . Then the intersection of C with the **union** $\mathcal{S}^{[2]}$ of all special subvarieties of \mathbb{C}^n of codimension ≥ 2 is **finite** – **unless** C is **contained** in a proper special subvariety of \mathbb{C}^n .

Theorem. (+Habegger) The conjecture above is true if C is defined over $\overline{\mathbb{Q}}$ and asymmetric.

Definition: *C* is **asymmetric** if each positive integer appears at most once among $deg(X_i|C)$, up to one exception which may appear twice.

Same strategy. First "unlikely" result "beyond AO". Requires "Ax-log" result for j. Includes an analogue of ML (holds for all $V \subset \mathbb{C}^n$).

Consider now $C \subset \mathbb{C}^n$ as Shimura variety.

 $S^{[2]} = \cup$ special subvarieties of codimension 2.

 $C \cap S^{[2]}$ consists: $(x_1, \ldots, x_n) \in C$ satisfying 2 independent **modular** relations (or coordinates special).

Suppose all but 2 coordinates constant on C:

$$C = \{(c_1, \dots, c_n, x, y) : f(x, y) = 0\}$$

 $\Phi_n(x,c_i), \Phi_m(y,c_j)$ (or x and/or y = special).

...analogue of Mordell-Lang for $V \subset Y(1)^n$.

"Mordell-Lang" for \mathbb{C}^n

Definition. Let Σ be a finite subset of \mathbb{C} . A point $x \in \mathbb{C}$ is called Σ -special if it is special or in the Hecke orbit of some $c \in \Sigma$ i.e. $j^{-1}(x) \in \operatorname{GL}_2^+(\mathbb{Q})j^{-1}(c)$.

Definition. A Σ -special subvariety is a weakly special subvariety which contains a Σ -special point.

Theorem. (+Philipp Habegger) Let $\Sigma \subset \overline{\mathbb{Q}}$ be a finite set and $V \subset \mathbb{C}^n$ a variety. Then V contains only finitely many Σ -special points **unless** V contains a Σ - special subvariety of positive dimension. **Moreover**, V contains only finitely many maximal Σ -special subvarieties. **Sketch.** Note that for $c \in \overline{\mathbb{Q}}$ but not special, a point $\sigma \in \mathbb{H}$ with $j(\sigma) = c$ is **transcendental** (Th. Schneider).

Fixing one such $\sigma \in \mathbb{H},$ the Hecke orbit is

$$\mathsf{GL}_2^+(\mathbb{Q})\sigma = \{g\sigma : g \in \mathsf{GL}_2^+(\mathbb{Q})\}.$$

Take $\sigma \in \mathbb{H}$ with $j(\sigma) = c$ for each $c \in \Sigma$.

Break into finitely many cases:

* Certain coords, say x_{k+1}, \ldots, x_n are special.

* Other x_i is in Hecke orbit of some $c_i \in \Sigma$.

For each such case consider:

 $\Omega = \mathrm{GL}_2(\mathbb{R})^k \times \mathbb{H}^{n-k} \to U = \mathbb{H}^n \to \mathbb{C}^n,$

 $(g_i, \tau_j) \mapsto (g_i \sigma_i, \tau_j) \mapsto (j(g_i \sigma_i), j(\tau_j))$

and look for suitably "rational" points in the preimage of Z in $GL_2(\mathbb{R})^n$:

Quadratic points in \mathbb{H} , rational points in $GL_n(\mathbb{R})$. 28 The map $GL_n(\mathbb{R}) \to \mathbb{H}$ is fibred by copies of $SO_2(\mathbb{R}) \times \Delta$.

But we get T^{ϵ} "blocks". The map $\operatorname{GL}_2(\mathbb{R}) \to \mathbb{H}$ is semialgebraic, so image of block is a finite union of blocks.

So T^{ϵ} blocks in Ω map to T^{ϵ} blocks in U.

Alg(Z) is same as before.

Lower bounds:

* Special points: same

* Orbit of c: isogeny estimates (Masser et al) or Serre open image. \Box

Certain $C \subset \mathbb{C}^n$

Sketch. What does an "unlikely intersection" point look like?

$$(x_1,\ldots,x_n)\in C$$

Cases:

(1) $\Phi_N(x_{i_1}, x_{i_2}) = 0$ and $\Phi_M(x_{i_3}, x_{i_4}) = 0$, with $x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}$ distinct.

(2) $\Phi_N(x_{i_1}, x_{i_2}) = 0, \Phi_M(x_{i_2}, x_{i_3}) = 0$, with $x_{i_1}, x_{i_2}, x_{i_3}$ distinct.

(3) $x_{i_1} = c$ special, $\Phi_M(x_{i_2}, x_{i_3}) = 0$, with $x_{i_1}, x_{i_2}, x_{i_3}$ distinct.

(4) $x_{i_1} = c_1, x_{i_2} = c_2$ with x_{i_1}, x_{i_2} distinct and c_1, c_2 special reverts to AO.

Case (2) on x_1, x_2, x_3

Consider: Points $P = (x_1, x_2, x_3) \in C$ with $\Phi_N(x_1, x_2) = 0$, and $\Phi_M(x_2, x_3) = 0$, where N, M depend on P.

Uniformisation: $\mathbb{H}^3 \to \mathbb{C}^3$ by *j*-function.

P as above gives rise to $(\tau_1, \tau_2, \tau_3) \in \mathbb{H}^3$ with

 $z_2 = \alpha z_1, \quad z_3 = \beta z_2$ for some $\alpha, \beta \in \operatorname{GL}_2^+(\mathbb{Q}).$

If some coordinate is constant on C we are in "Mordell-Lang" situation: we may assume C is not contained in any weakly special subvariety.

Need suitable "Ax-type" result:

"Ax logarithms"

 $j: \mathbb{H} \to \mathbb{C}$ has a multivalued inverse $\ell: \mathbb{C} \to \mathbb{H}$, the "*j*-logarithm".

Want: for algebraic functions a_i , the $\ell(a_i)$ are algebraically independent unless the a_i have modular relations, or are constant.

Theorem. Let $C \subset \mathbb{C}^3$ be irreducible curve, $\tau \in j^{-1}(C) \subset \mathbb{H}^3$. Suppose a complex algebraic hypersurface W contains a neighbourhood of z in $j^{-1}(C)$. Then C is contained in a weakly special subvariety.

Uses: André's normality theorem (does not use o-minimality).

Case (2), ctd

For $\alpha, \beta \in GL_2^+(\mathbb{R})$, let

 $Y_{\alpha,\beta} = \{(\tau_1, \tau_2, \tau_3) \in \mathbb{C}^3 : \tau_2 = \alpha \tau_1, \tau_3 = \beta \tau_2\}.$ $Y_{\alpha,\beta}$ is a complex algebraic curve in a family parameterised by

$$\operatorname{GL}_2^+(\mathbb{R}) \times \operatorname{GL}_2^+(\mathbb{R}).$$

Let $Z = j^{-1}(C) \cap F$, definable. Also definable: $X = \{(\alpha, \beta) \in \operatorname{GL}_2^+(\mathbb{R})^2 : Y_{\alpha,\beta} \cap Z \neq \emptyset\}.$

1. Each $Y_{\alpha,\beta} \cap Z$ is finite, otherwise, by "Axlog", C would be contained in a weakly special subvariety, contrary to assumptions.

2. O-minimality: a uniform finite bound for $(\alpha, \beta) \in GL_2^+(\mathbb{R})^2$.

3. The intersections are then given by finitely many functions f_i defined and C^1 on some cells.

Case (2), concluded

4. Lower bounds: an unlikely point P has "many" Galois conjugates: i.e. gives rise to at least cT^{δ} points of height $\leq T$ on X.

Uses: height properties on curves (asymmetry used here), isogeny estimates, ...

5. Choose $\epsilon < \delta$. Pila-Wilkie now provides a finite number of definable "block families" containing all the "blocks" occurring in the theorem, compatible with the cells for the f_i .

6. Suppose now a point P with $L = \max(N, M)$ large. Have $\geq cL^{\delta}$ points in Z. But the points $Q \in X$ lie on $\leq CL^{\epsilon}$ blocks. If an algebraic curve through a point Q has f_i non-constant, we get an algebraic surface W containing Z. **Contradiction.** So the f_i are all constant on the blocks, and this accounts for too few points P. **Contradiction.** \Box "Torsion anomalous" points

Masser-Zannier establish first cases of Pink's relative MM conjecture, using o-minimality.

Theorem. (M+Z) There are only finitely many complex numbers $\lambda \neq 0, 1$ such that the points

$$(2,\sqrt{2(2-\lambda)}),$$
 $(3,\sqrt{6(3-\lambda)})$

on the elliptic curve

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$

are both torsion points.

View as family of $E_{\lambda} \times E_{\lambda}$ over λ -line. The point ((2,...), (3,...)) describes a curve, on which one expects only finitely many torsion points. But the ambient abelian variety moves with λ .

For $(2, \sqrt{2(2-\lambda)})$ alone, infinitely many λ .

4. André-Oort again

Ingredients

A. Definability: Peterzil-Starchenko $\mathcal{A}_{g,1}$.

B. Lower bounds: Tsimerman $\mathcal{A}_{g,1}, g \leq 5$.

C. Ax-Lindemann-Weierstrass:

Consider Shimura variety X e.g. $\mathcal{A}_{g,1}$. Have $\pi: U \to X, \quad V \subset X$

Conjecture. (Ax-L-W): A maximal complex algebraic $W \cap U \subset \pi^{-1}(V)$ is weakly special.

Theorem. (Ullmo-Yafaev) *True if* dim V = 1.

36

Hilbert modular surfaces

Certain quotient of \mathbb{H}^2 by action of a discrete arithmetic group coming from a real quadratic field k.

$$\pi: \mathbb{H}^2 \to X.$$

Moduli space of pp Abelian surfaces with real multiplication: $X \subset A_{2,1}$.

Theorem. (Daw-Yafaev) AO for HMS's

Definability: Peterzil-Starchenko for $A_{2,1}$. Lower bounds: Edixhoven. AxLW: Ullmo-Yafaev. \Box

Other cases of curve V in $X \subset \mathcal{A}_{g,1}, g \leq 5$ should follow similar lines.

Siegel modular threefold

AO for moduli space of pp Abelian surfaces, + Jacob Tsimerman.

Siegel upper half space: $J : \mathbb{H}_2 \to \mathcal{A}_{2,1}$

Definability: Peterzil-Starchenko.

Lower bound for Galois orbit: Tsimerman.

Ax-Lindemann-Weierstrass: uses o-minimality, but not P-Wilkie.

Take $V \subset \mathcal{A}_{2,1}$

* dim V = 1: conclude using Ullmo-Yafaev.

* dim V = 2: ... tame complex analytic results of Peterzil-Starchenko ...