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Diophantine geometry in o-minimal structures

Result (+Alex Wilkie) about the distribution
of rational points on a “definable set”.

II.

Diophantine geometry via o-minimal structures

A strategy proposed by Umberto Zannier in the
context of the Manin-Mumford conjecture

(Raynaud’s Thm).

Some cases of the André-Oort conjecture,
some cases of the Zilber-Pink conjecture.

+ Zannier, Masser-Zannier, JP, + Habegger,
+ Tsimerman, others.

Various uses of o-minimality.
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Height of rational points

H(a/b) = max(lal, [b]), (a,b) = 1,

H(q1,...,qn) = max(H(q1),...,H(gn)).

Definition. The algebraic part of Z C R" is

Alg(Z) = JA

over all connected positive dimensional semi-
algebraic A C Z.

Here: a semi-algebraic set in R™ is a finite
union of sets, each defined by equations

Fi(x1,...,2n) =0, 1=1,...,k,

Gi(z1,...,zp) >0, j=1,...,h

where F;, G; € R[X7q,..., Xn].
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Counting rational points

Idea: A ‘reasonable” set Z C R"™ has ‘“few”
rational points outside its algebraic subset:

Theorem. (4Alex Wilkie) Let Z C R™ be a
set that is definable in an o-minimal structure
over R, and ¢ > 0. Then

N(Z = Alg(2),T) < e(Z, e)TE.

The “algebraic subset” Alg(Z) of a set can be
viewed as a (weak) analogue of Sp(V).

Refinement. The same for algebraic points
of some bounded degree k:

Z CR™ N(2Z,T)=
#{(x1,...,2n) € Z : [Q(=;) : Q] < k, H(x;) < T},

N.(Z — AIg(Z),T) < e(Z, k, €)T*.
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Further refinement

The theorem vyields more information about
how much of Alg(Z) we need to remove:

Theorem. Let Z C R"™ be definable, ¢ > 0.
Then Z(Q,T) is contained in at most ¢(Z,¢)T*
blocks coming from finitely many (depending
on ¢) block families.

Definition. A block is a cell that is contained
in a semi-algebraic cell of same dimension.

* a block of dimension 0 is a point
* a block of positive dimension C Alg(Z2)

* Z(k,T) in ¢(Z,k,e)T¢ blocks.



Wilkie's conjecture
In general, this result cannot be much improved.

In particular, examples (in Ran) show that one
cannot replace ¢(Z,¢)T€ by

c(Z)(log T)C.

Wilkie’s conjecture. For Z C R" definable in
Rexp One can.

Partial results:
Curves (Butler, Jones-Thomas (+Miller))

Certain surfaces (Butler, Jones-Thomas)

§)



II.

Umberto Zannier proposed: strategy for a new
proof of Manin-Mumford conjecture (Raynaud’s
theorem) for abelian varieties A/Q.

Same strategy has wider applicability.

Sketch first for multiplicative MM (torsion case
of theorem of M. Laurent).



1. The multiplicative MM

Algebraic subvariety V C (C*)":
V={xe(CH" : Fi(kx)=0,i=1,...,m}

where C* = C — {0} as multiplicative group
(coordinate-wise multiplication on (C*)™).

Consider: torsion points on V = points whose
coordinates are roots of unity.

“Conjecture” : V contains only finitely many
torsion points unless V contains a subtorus
of positive dimension or translate thereof by a
torsion point (“torsion coset”).

Subtorus: equations like: z2y3z =1 in (C*)3.

Torsion coset: eqs like: z2y3z = exp(27i/7).
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“Conjecture”: V C (C*)™ contains only finitely
many torsion points unless VV contains a torus

coset of positive dimension.

Observe:

1. Torsion cosets of positive dimension contain
infinitely many rational points

2. A torsion point is a torsion coset of the
trivial subgroup of (C*)™

“Refined conjecture”: Finitely many torsion
cosets contained in V contain all the torsion
points in V. I.e. V has only finitely many

Mmaximal torsion cosets.



Proof. Since torsion points are algebraic, we
can assume V is defined over a number field.

Start with uniformisation
exp : C" — (CH",

exp(z1,...,2n) = (exp(z1),...,exp(zn)).

Real coordinates on C": Re(z),Im(z)/2n. Then
pre-images of torsion points

(coygjmiy...), ¢q; €Q
are rational points. The uniformization is
2miZ—periodic,

so cannot be definable. But its restriction
to a fundamental domain F' is definable in
Ran, exp (need exp on R and sin,cos on [0, 27]).

Let
Z =exp (V)N F.
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Opposing bounds
Count rational points in Z =exp~ (V)N F.

Archimedean upper bound for Z by PW:
N(Z - Alg(2),T) <c(Z,e)TC.

Galois lower bound on V side. A torsion point
P of order T in (C*)™ has degree

o(T) >>T/logT,

(Euler ¢-function). A fixed positive proportion
of conjugates lie again on V; so if P € V then

N(Z,T)>c(V)T/logT
Incompatible bounds: take e = 1/2 (say).
So either the orders of torsion points on V are

bounded, giving finiteness, or Alg(Z) # 0.
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The algebraic part

Next: characterise Alg(Z). Real — complex.

Alg(exp~1(V)) = Jcomplex algebraic W

Let W irreducible complex algebraic variety with
W cexp I(V)ccCn
(won't be contained in Z). Let
z; € C(W)
be induced by the coordinate functions, then
exp(z;)

as functions on W satisfy the equations of V:
Dependent exponentials of algebraic fns.

Ax (1971): Proved Schanuel conjecture in a
differential field (i.e. for functions).

By “Ax-Lindemann-Weierstrass’”’ — part of

Ax-Schanuel corresponding to LW, the z; are

linearly dependent over Q modulo constants.
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AXx-Lindemann-Weierstrass

Ax-L-W theorem: Suppose a; €¢ C(W) are
elements in some algebraic function field. The
functions

exp(a;)

on W are algebraically independent over C
unless the a; are linearly dependent over Q
modulo constants (i.e. Y. q,a;, = c € C,q; € Q,
not all =0) .

is equivalent (more generally) to:

Theorem (“Ax-L-W"): LetV C (C*)" be
algebraic. A maximal complex algebraic variety
W C exp~ (V) is a translate of a rational linear
subspace.

Conclude:

Alg(exp~1(V)) = Uexp_1 subtorus cosets in V

(not only torsion cosets).
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Summary/conclusion

Transcendental uniformization, definable on a
fundamental domain:

rational point < torsion point

“Complexity” (order) of torsion point:

upper bound << lower bound

Characterization of “algebraic part” (Ax-L-W):

maximal algebraic =~ subtorus coset

Finiteness for the number of subtori T' having
a coset aT C V (elementary/o-minimality).

Finally: an inductive argument to conclude:
tor csts aT C V « tor pts a € V' C (C*)/T.
Completes proof .O
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2. Andre-Oort Conjecture

André-Oort conjecture (‘89/95): analogue of
MM for Shimura varieties X. Examples:

* Moduli space of pp abelian vars given dim
* Hilbert modular surfaces, H modular varieties
* Shimura curves: quotient of H by a discrete
subgroup of SL>(R) coming from an indefinite
quaternion algebra over Q, gen modular curves.

Conjecture. Let V C X. Then V contains
only finitely many “special points” unless it
contains a ‘special subvariety” of pos. dim.

So: ‘special pt” ~ torsion pt, ‘sp subv.” ~ ...

Refined version: All ‘“special points’ € V lie
in finitely many ‘special subvarieties’ C V.

Full proof announced by Klingler-Ullmo-Yafaev
on GRH. Few cases known unconditionally.
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André-Oort for C»

C =Y (1) as j-line parameterising elliptic curves.

j(7): jg-invariant of £ «— Z & Zt, SLo(Z)-inv.

Special point in C = the 5 invariant of a CM
elliptic curve = elliptic curve with extra endo-
morphisms. Special point in C": tuple.

André-Oort Conjecture for C": V C C" has
finitely many special points unless it contains
a ‘‘special subvariety” of positive dimension
(~ product of modular curves).

Edixhoven (2005) under GRH for CM fields.
For n = 2, André unconditionally (1998).
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Sketch proof.

Reprise mult MM proof with 5 instead of exp.

Uniformisation:
j:H" — C",

i(r1, - m) = (G(11), .-, 3(mn)).

ar + b
ct + d

SL>(Z)"™ — invariant, T

Definability of j on F', in Ran exp, despite its
essential singularity in cusp, by g-expansion,
or Peterzil4+Starchenko ('04) result for p(z, 7).

So too 5 on F™,

j(7) is special <= 7 is imaginary quadratic.

By Complex Multiplication

Q@i (7)) : Q] = h(D)
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Opposing bounds

Definability 4+ bounded degree: Upper bound.

No(Z — Alg(Z),T) < e(Z, )T

Lower bound: [Q(j(7)) : Q] = hA(D). Siegel:
h(D) > c(n)|DIY271, n >0,

unconditional (though ineffective). And as
H(r) << D, if j(71,...,m) €V, D; = D(7) and
D = maxD,; get

No(Z) > e(V)DY*  (n=1/4 say ).
Incompatible bounds.

Study Alg(Z). Last ingredient:
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Ax-Lindemann-Weierstrass for j
If g € GL%‘(Q) (4+ for det > 0, to preserve H),

. . _ar+b
j(1), j(g7), 9=

are related by a modular polynomial,

PN (5(7),5(g7)) =0,
and so are algebraically dependent (over Q).

Definition. Algebraic functions a; € C(W') will
be called geodesically independent if they
are all non-constant and there are no relations
a; = gaj,i 7 j as above.

Need: all a; take values in H for some point
of W so that j(a;) are locally functions on W.

Theorem (AXx-L-W for j): Suppose a; are

geodesically independent algebraic functions.

Then j(a;) are algebraically independent /C.
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Definition. A weakly special subvariety of
H"™ is W NH" where W is defined by equations

Zi) = 9kZj 9k € GLI(Q), k=1,...,¢

ng:CkEH, Ek=1,...,m.

It is special if all ¢, are quadratic.

This data determines a special subvariety

Wi Groinan)}
on the variables iz, 5.

We refer to W as being the translate by the
ck OF Wi dan)}

Theorem (Ax-L-W for j). Let V C C" be
algebraic. If W is a maximal complex algebraic
variety with WNH" C j71(V) then W is weakly
special.

Proof. Uses O-minimality plus P-Wilkie again.
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Ingredients and prospects for AO

Basic set up: Uniformisation

m.:U — X, [ —invariant.

All cases of (mixed) André-Oort look like this.
Special points in U have finite degree..

A. Definability (upper bounds): Definability
of uniformising map. Peterzil-Starchenko: for
theta functions in both sets of variables (in
Ran,exp), so for A, 1, even as mixed Shimura
variety.

B. Lower bounds: for Galois orbits of special
points: Jacob Tsimerman (2011): Ag4,9 < 5
unconditionally. (Also Yafaev-UlImo).

Height of point in F (Tsimerman, for Hy).

C. Ax-Lindemann-Weierstrass: Of interest
and approachable indpt of lower bounds.

Maximal algebraic c == 1(V) is weakly special.
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Further results
Cases of ZP — later:

1. Masser-Zannier ‘“torsion anomalous’” points

2. "“unlikely” in C" (4+Habegger )

Cases of AO or ‘“generalised” versions:
3. AOMML for C" x E1 X ... X Em x (C*)¢, E;/Q
4. Hilbert modular surfaces (Daw-Yafaev 2011)

In progress:.

5. Products of elliptic modular surfaces: L™,

L={(\zy): y?=a(-1)(z - N}
Special point: \; special, («x;,y;) torsion.

6. Products of Shimura curves
7. Siegel modular threefold A1 = moduli

space of pp Abelian surfaces: (4 Tsimerman)
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3. The Zilber-Pink conjecture

A far-reaching generalization of AOMM, due
to Zilber ((C*)™, semi-abelian), independently
(later) Pink for (mixed) Shimura varieties, also
Bombieri-Masser-Zannier proved results, made
conjectures on “unlikely intersections” in (C*)™.

Let SI*] be the union of all algebraic subgroups
of (C*)" of codimension at least k.

E.g. For a curve C C G} (C) = (C*)™, C/C.

Conjecture. C n SI2l is finite, unless C is
contained in a proper algebraic subgroup.

This is a Theorem due to BMZ, Maurin.

C N 82l consists: (x1,...,zn) € C satisfying 2
(or more) independent multiplicative relations.

Multiplicative MM is a special case (n = 2 or
intersect with subgroups of codimension n)
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Example. Find all t € C such that

(t,1+¢t,1—1t)eC3
satisfy two independent multiplicative relations

(Cohen-Tretkoff4+Zannier). Or same for

(2,3,t,14+¢1—1t) C C>.
ZP implies ML

Suppose all but 2 coordinates constant on C':
C ={(c1,---,¢cn,x,y) : f(x,y) = 0}. (assume:
c; mult. ind. o/w C C special). Two equations

poyd = {1 gy = cfl .

amounts to: solving f(x,y) = 0 in the division
group generated by c1,...,cn.

I.e. Although ZP involves only special subvts,
Mordell-Lang appears as a degenerate case.

24



ZP for curves in C" =Y (1)"

Conjecture. Let C'/C be a curve in C". Then
the intersection of C' with the union S[2! of all
special subvarieties of C" of codimension > 2
is finite — unless C' is contained in a proper
special subvariety of C™.

Theorem. (+Habegger) The conjecture above
is true if C is defined over Q and asymmetric.

Definition: C is asymmetric if each positive
integer appears at most once among deg(X;|C),
up to one exception which may appear twice.

Same strategy. First “unlikely” result “beyond
AQ" . Requires “Ax-log"” result for 5. Includes
an analogue of ML (holds for all V C C").
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Consider now C C C"™ as Shimura variety.

si2l = special subvarieties of codimension 2.
C N 82l consists: (z1,...,xn) € C satisfying 2
independent modular relations (or coordinates
special).

Suppose all but 2 coordinates constant on C:
C = {(cl,...,cn,az,y) : f(xay) — O}

Pn(z,c;), Pm(y,cj) (or x and/or y = special).

...analogue of Mordell-Lang for V C Y (1)™.
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“Mordell-Lang” for C"

Definition. Let > be a finite subset of C. A
point x € C is called >-special if it is special or
in the Hecke orbit of some ce X~ i.e. j71(z) €

GLT (@) 1(e).

Definition. A > -special subvariety is a weakly
special subvariety which contains a >--special
point.

Theorem. (4Philipp Habegger) Let ¥ C Q be
a finite set and V. C C" a variety. Then V' con-
tains only finitely many >--special points unless
V contains a >- special subvariety of positive
dimension. Moreover, V contains only finitely
many maximal >--special subvarieties.
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Sketch. Note that for ¢ € Q but not special,

a point o € H with j(o) = ¢ is transcendental
(Th. Schneider).

Fixing one such o € H, the Hecke orbit is

GLF (Q)o = {go: g € GLF(Q)}.
Take o € H with j(o) = ¢ for each c € X.

Break into finitely many cases:
* Certain coords, say xg41,...,Tn are special.
* Other z; is in Hecke orbit of some ¢; € *.

For each such case consider:

Q=GL (R x H" % - U =H" - C",

(9i,75) = (9504, 75) — (j(g;04),7(7;))
and look for suitably “rational” points in the
preimage of Z in GL>(R)":

Quadratic points in H, rational pointsin GL,(R).
28



The map GL,(R) — H is fibred by copies of
SOQ(R) X A\,

But we get T¢ “blocks”. The map GL>(R) — H
IS semialgebraic, so image of block is a finite
union of blocks.

So T°€ blocks in €2 map to 7€ blocks in U.
Alg(Z) is same as before.

Lower bounds:

* Special points: same

* Orbit of c¢: isogeny estimates (Masser et al)
or Serre open image. O
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Certain C Cc C"
Sketch. What does an “unlikely intersection”
point look like?

(3317”'7x71) EC

Cases:

(1) CDN(ai‘Z'l,:CZ'Q) = 0 and CDM(CUZ'?),HLM) = 0, with
Xj1sLjny Ligs Tiy distinct.

(2) on(ziy,zi,) = 0,Pp(xiy, z5,) = 0, with
Xj1rLiny Tig distinct.

(3) Tjy = C special, ¢M(wi27xi3) 0, with

Tj1rLiny Lig distinct.

(4) z;, = c1,24, = co with z;,,z;, distinct and
c1,cp special reverts to AO.
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Case (2) on x1,x5, 3

Consider: Points P = (x1,z2,73) € C with
CDN(CULQTQ) = 0, and ¢M(a§2,w3) = 0, where
N, M depend on P.

Uniformisation: H3 — C3 by j-function.

P as above gives rise to (71,7, m3) € H3 with
zp = az1, 23 = [z

for some o, 3 € GLS‘(Q).

If some coordinate is constant on C we are in
“Mordell-Lang” situation: we may assume C'is
not contained in any weakly special subvariety.

Need suitable “Ax-type” result:
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“AX logarithms”

7 - H — C has a multivalued inverse ¢ : C — H,
the “j-logarithm™ .

Want: for algebraic functions a;, the £(a;) are
algebraically independent unless the a; have
modular relations, or are constant.

Theorem. Let C C C3 be irreducible curve,
r €7 1(C) c H3. Suppose a complex algebraic
hypersurface W contains a neighbourhood of
z in 57Y(C). Then C is contained in a weakly
special subvariety.

Uses: André’'s normality theorem (does not use
o-minimality).
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Case (2), ctd

For o, 8 € GL;(R), let

Yo 5= {(r1,72,73) € C3: 75 = ary, 73 = B12}.
Yaﬁ IS a complex algebraic curve in a family
parameterised by

GLZ (R) x GLT (R).

Let Z = j~1(C) N F, definable. Also definable:
X = {(, 8) € GLT (R)? : Y, g Z # 0}.

1. Each YaﬁﬂZ is finite, otherwise, by “AXx-
log”, C would be contained in a weakly special
subvariety, contrary to assumptions.

2. O-minimality: a uniform finite bound for
(o, B) € GLT (R)2.

3. The intersections are then given by finitely
many functions f; defined and C1 on some
cells.
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Case (2), concluded

4. Lower bounds: an unlikely point P has
“many”’ Galois conjugates: i.e. gives rise to
at least ¢T° points of height < T on X.

Uses: height properties on curves (asymmetry
used here), isogeny estimates, ...

5. Choose € < ¢§. Pila-Wilkie now provides
a finite number of definable “block families”
containing all the “blocks” occurring in the
theorem, compatible with the cells for the f;.

6. Suppose now a point P with L = max (N, M)
large. Have > cL? points in Z. But the points
Q@ € X lie on < CL¢ blocks. If an algebraic
curve through a point @ has f; non-constant,
we get an algebraic surface W containing Z.
Contradiction. So the f; are all constant
on the blocks, and this accounts for too few
points P. Contradiction. O
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“Torsion anomalous’” points

Masser-Zannier establish first cases of Pink’s
relative MM conjecture, using o-minimality.

Theorem. (M+42Z) There are only finitely many
complex numbers A\ #= 0,1 such that the points

(2,22 -2X), (3,/6(3-N)

on the elliptic curve

Ey:y>=xz(z—1)(z—\)

are both torsion points.

View as family of £\ X Ey over A-line. The point
((2,...),(3,...)) describes a curve, on which one
expects only finitely many torsion points. But
the ambient abelian variety moves with A.

For (2, \/2(2 — X)) alone, infinitely many \.
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4. André-Oort again

Ingredients
A. Definability: Peterzil-Starchenko A, ;.
B. Lower bounds: Tsimerman A, 1,9 <5.
C. Ax-Lindemann-Weierstrass:

Consider Shimura variety X e.g. A, 1. Have

™. U—-X, VCX

Conjecture. (Ax-L-W): A maximal complex
algebraic WNU C #~1(V) is weakly special.

Theorem. (Ullmo-Yafaev) True if dimV = 1.
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Hilbert modular surfaces

Certain quotient of 2 by action of a discrete
arithmetic group coming from a real quadratic
field k.

7TIH2—>X.

Moduli space of pp Abelian surfaces with real
multiplication: X C Ao 1.

Theorem. (Daw-Yafaev) AO for HMS's

Definability: Peterzil-Starchenko for A5 1. Lower
bounds: Edixhoven. AxXLW: Ullmo-Yafaev. O

Other cases of curve V in X C A 1,9 < 5
should follow similar lines.
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Siegel modular threefold

AQO for moduli space of pp Abelian surfaces,
+ Jacob Tsimerman.

Siegel upper half space: J:Hs — A1
Definability: Peterzil-Starchenko.
Lower bound for Galois orbit: Tsimerman.

AX-Lindemann-Weierstrass: uses o-minimality,
but not P-Wilkie.

Take V C Ap 4
* dimV = 1: conclude using Ullmo-Yafaev.

*dimV = 2: ... tame complex analytic results
of Peterzil-Starchenko ...
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