

Definable Functions

Universitä Konstan

Integer-valued functions and rational points on definable sets

Margaret E. M. Thomas

Fachbereich Mathematik und Statistik and Zukunftskolleg, Universität Konstanz

Recent Developments in Model Theory, Oléron June 10 2011

Definable Functions

(日) (同) (三) (三)

Interested in functions $f: [0,\infty)^n \to \mathbb{R}$ which have $f(\mathbb{N}^n) \subseteq \mathbb{Z}$.

Rational Points

Definable Functions

(日) (同) (三) (三)

Universität Konstanz

Interested in functions $f: [0,\infty)^n \to \mathbb{R}$ which have $f(\mathbb{N}^n) \subseteq \mathbb{Z}$. In particular, in their growth at infinity.

Rational Points

Definable Functions

Universität

Interested in functions $f: [0,\infty)^n \to \mathbb{R}$ which have $f(\mathbb{N}^n) \subseteq \mathbb{Z}$. In particular, in their growth at infinity.

Theorem (Pólya 1920)

If $f \colon \mathbb{C} \to \mathbb{C}$ is entire and such that $f(\mathbb{N}) \subseteq \mathbb{Z}$, then, if

$$\limsup_{r\to\infty}\frac{m(f,r)}{2^z}<1,$$

then f is a polynomial, where $m(f,r) := \sup\{f(z) : |z| \le r\}$.

Rational Points

Definable Functions

Universitä

Interested in functions $f: [0,\infty)^n \to \mathbb{R}$ which have $f(\mathbb{N}^n) \subseteq \mathbb{Z}$. In particular, in their growth at infinity.

Theorem (Pólya 1920)

If $f \colon \mathbb{C} \to \mathbb{C}$ is entire and such that $f(\mathbb{N}) \subseteq \mathbb{Z}$, then, if

$$\limsup_{r\to\infty}\frac{m(f,r)}{2^z}<1,$$

then f is a polynomial, where $m(f,r) := \sup\{f(z) : |z| \le r\}$.

This theorem has many descendants for functions in \mathbb{C} . But what about \mathbb{R} ?

Rational Points

Definable Functions

Universitä

Interested in functions $f: [0,\infty)^n \to \mathbb{R}$ which have $f(\mathbb{N}^n) \subseteq \mathbb{Z}$. In particular, in their growth at infinity.

Theorem (Pólya 1920)

If $f \colon \mathbb{C} \to \mathbb{C}$ is entire and such that $f(\mathbb{N}) \subseteq \mathbb{Z}$, then, if

$$\limsup_{r\to\infty}\frac{m(f,r)}{2^z}<1,$$

then f is a polynomial, where $m(f,r) := \sup\{f(z) : |z| \le r\}$.

This theorem has many descendants for functions in \mathbb{C} . But what about \mathbb{R} ? The above does not apply in the real analytic setting; consider, say, $f(x) = \sin(\pi x)$.

So what is known in the real case?

э

イロト 不得下 イヨト イヨト

(日) (同) (三) (三)

Theorem (Wilkie 2004)

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is definable in an o-minimal expansion of $\overline{\mathbb{R}} := \langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$ with the property that $f(\mathbb{N}) \subseteq \mathbb{Z}$. If there is a polynomial $p \in \mathbb{R}[X]$ such that ultimately f(x) < p(x), then there is a polynomial $q \in \mathbb{Q}[X]$ such that ultimately f(x) = q(x).

(日) (同) (三) (三)

Theorem (Wilkie 2004)

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is definable in an o-minimal expansion of $\overline{\mathbb{R}} := \langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$ with the property that $f(\mathbb{N}) \subseteq \mathbb{Z}$. If there is a polynomial $p \in \mathbb{R}[X]$ such that ultimately f(x) < p(x), then there is a polynomial $q \in \mathbb{Q}[X]$ such that ultimately f(x) = q(x).

We shall prove a result in the direction of Pólya's for functions definable in $\mathbb{R}_{exp} := \langle \overline{\mathbb{R}}, exp \rangle$.

Theorem (Wilkie 2004)

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is definable in an o-minimal expansion of $\overline{\mathbb{R}} := \langle \mathbb{R}, <, +, \cdot, 0, 1 \rangle$ with the property that $f(\mathbb{N}) \subseteq \mathbb{Z}$. If there is a polynomial $p \in \mathbb{R}[X]$ such that ultimately f(x) < p(x), then there is a polynomial $q \in \mathbb{Q}[X]$ such that ultimately f(x) = q(x).

We shall prove a result in the direction of Pólya's for functions definable in $\mathbb{R}_{exp} := \langle \overline{\mathbb{R}}, exp \rangle$. (It will, in fact, be applicable more generally.)

Rational Points

Definable Functions

(日) (同) (三) (三)

For a function f, let $M_f(r) := \sup\{|f(\bar{x})| : \bar{x} \in \overline{B_r(0)} \cap [0,\infty)^k\}.$

Rational Points

Definable Functions

イロト 不得 トイヨト イヨト

For a function f, let $M_f(r) := \sup\{|f(\bar{x})| : \bar{x} \in \overline{B_r(0)} \cap [0,\infty)^k\}.$

Theorem (Jones-T.-Wilkie 2011)

Let $f: [0,\infty)^k \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}^k) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $M_f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Rational Points

Definable Functions

イロト 不得 トイヨト イヨト

Universität

For a function f, let $M_f(r) := \sup\{|f(\bar{x})| : \bar{x} \in \overline{B_r(0)} \cap [0,\infty)^k\}.$

Theorem (Jones-T.-Wilkie 2011)

Let $f: [0,\infty)^k \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}^k) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $M_f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

This is not an empty theorem!

Definable Functions

Universität

For a function f, let $M_f(r) := \sup\{|f(\bar{x})| : \bar{x} \in \overline{B_r(0)} \cap [0,\infty)^k\}.$

Theorem (Jones-T.-Wilkie 2011)

Let $f: [0,\infty)^k \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}^k) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $M_f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

This is not an empty theorem! For example,

$$f(x) = \exp_n(2\log_n(x)) \text{ and } g(x) = \exp_n(\frac{1}{2}\log_{n-1}(x))$$

are both definable in \mathbb{R}_{\exp} and analytic, and both ultimately grow slower than $\exp(t^{\varepsilon})$, for any $\varepsilon > 0$, but faster than all polynomials. (So $f(\mathbb{N}), g(\mathbb{N}) \nsubseteq \mathbb{Z}$.)

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$ and consider $|X \cap \mathbb{Q}^n|$.

(日) (同) (三) (三)

Definable Functions

(日) (周) (日) (日)

Universität Konstanz

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$ and consider $|X \cap \mathbb{Q}^n|$. (Remark: in this section, could substitute for "rational" everywhere "in a fixed real number field".)

Definable Functions

イロト イ理ト イヨト イヨト

Universitä

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$ and consider $|X \cap \mathbb{Q}^n|$. (Remark: in this section, could substitute for "rational" everywhere "in a fixed real number field".)

Guiding Principle:

If X contains "too many" rational points, then it must contain an infinite connected semialgebraic set.

Definable Functions

Universitä

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$ and consider $|X \cap \mathbb{Q}^n|$. (Remark: in this section, could substitute for "rational" everywhere "in a fixed real number field".)

Guiding Principle:

If X contains "too many" rational points, then it must contain an infinite connected semialgebraic set.

Turn this around:

Consider $X^{\text{trans}} := X \setminus X^{\text{alg}}$, the transcendental part of X,

where X^{alg} is the union of all infinite, connected, semialgebraic subsets of X.

We investigate when X^{trans} does not contain "too many" rational points.

Universitä

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$ and consider $|X \cap \mathbb{Q}^n|$. (Remark: in this section, could substitute for "rational" everywhere "in a fixed real number field".)

Guiding Principle:

If X contains "too many" rational points, then it must contain an infinite connected semialgebraic set.

Turn this around:

Consider $X^{\text{trans}} := X \setminus X^{\text{alg}}$, the transcendental part of X,

where X^{alg} is the union of all infinite, connected, semialgebraic subsets of X.

We investigate when X^{trans} does not contain "too many" rational points.

But it is not a finitary/infinitary question - consider $|\operatorname{graph}(2^x) \cap \mathbb{Q}^2|$. Not finite but 2^x is a transcendental function.

Definable Function

(日) (同) (三) (三)

Instead categorise rational points by *height*: $H(\frac{a}{b}) := \max\{|a|, |b|\}.$

Rational Points

Definable Function

(日) (同) (三) (三)

Instead categorise rational points by height: $H(\frac{a}{b}) := \max\{|a|, |b|\}$. So, for a given height $T \in \mathbb{N}$, attention is restricted to at most T^2 points, $0, 1, \ldots, T, \ldots, \frac{1}{T}, \ldots, \frac{T}{T}$.

Rational Points

Definable Function

Instead categorise rational points by *height*: $H(\frac{a}{b}) := \max\{|a|, |b|\}$. So, for a given height $T \in \mathbb{N}$, attention is restricted to at most T^2 points, $0, 1, \ldots, T, \ldots, \frac{1}{T}, \ldots, \frac{T}{T}$. $\mathbb{Q}^n(T) := \{\overline{q} \in \mathbb{Q}^n | H(q_i) \le T\}; \qquad |\mathbb{Q}^n(T)| \le T^{2n}.$

Rational Points

Definable Functions

イロト イポト イヨト イヨト

Instead categorise rational points by *height*: $H(\frac{a}{b}) := \max\{|a|, |b|\}$. So, for a given height $T \in \mathbb{N}$, attention is restricted to at most T^2 points, $0, 1, \ldots, T, \ldots, \frac{1}{T}, \ldots, \frac{T}{T}$. $\mathbb{Q}^n(T) := \{\overline{q} \in \mathbb{Q}^n | H(q_i) \le T\}; \quad |\mathbb{Q}^n(T)| \le T^{2n}$. We then count $|X^{\text{trans}} \cap \mathbb{Q}^n(T)|$ and see how fast it grows with T.

Rational Points

Definable Functions

Instead categorise rational points by *height*: $H(\frac{a}{b}) := \max\{|a|, |b|\}$. So, for a given height $T \in \mathbb{N}$, attention is restricted to at most T^2 points, $0, 1, \ldots, T, \ldots, \frac{1}{T}, \ldots, \frac{T}{T}$. $\mathbb{Q}^n(T) := \{\overline{q} \in \mathbb{Q}^n | H(q_i) \le T\}; \qquad |\mathbb{Q}^n(T)| \le T^{2n}$. We then count $|X^{\text{trans}} \cap \mathbb{Q}^n(T)|$ and see how fast it grows with T.

Theorem (Pila-Wilkie 2006)

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For all $\varepsilon > 0$,

Rational Points

Definable Functions

Instead categorise rational points by *height*: $H(\frac{a}{b}) := \max\{|a|, |b|\}$. So, for a given height $T \in \mathbb{N}$, attention is restricted to at most T^2 points, $0, 1, \ldots, T, \ldots, \frac{1}{T}, \ldots, \frac{T}{T}$. $\mathbb{Q}^n(T) := \{\overline{q} \in \mathbb{Q}^n | H(q_i) \le T\}; \qquad |\mathbb{Q}^n(T)| \le T^{2n}$. We then count $|X^{\text{trans}} \cap \mathbb{Q}^n(T)|$ and see how fast it grows with T.

Theorem (Pila-Wilkie 2006)

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For all $\varepsilon > 0$, there exists $c(X, \varepsilon) > 0$ such that, for all (sufficiently large) $T \in \mathbb{N}$,

 $|X^{trans} \cap \mathbb{Q}^n(T)| \leq cT^{\varepsilon}.$

Rational Points

Definable Functions

Universität

Instead categorise rational points by height: $H(\frac{a}{b}) := \max\{|a|, |b|\}$. So, for a given height $T \in \mathbb{N}$, attention is restricted to at most T^2 points, $0, 1, \ldots, T, \ldots, \frac{1}{T}, \ldots, \frac{T}{T}$. $\mathbb{Q}^n(T) := \{\overline{q} \in \mathbb{Q}^n | H(q_i) \le T\}; \qquad |\mathbb{Q}^n(T)| \le T^{2n}$. We then count $|X^{\text{trans}} \cap \mathbb{Q}^n(T)|$ and see how fast it grows with T.

Theorem (Pila-Wilkie 2006)

Let $X \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For all $\varepsilon > 0$, there exists $c(X, \varepsilon) > 0$ such that, for all (sufficiently large) $T \in \mathbb{N}$,

 $|X^{trans} \cap \mathbb{Q}^n(T)| \leq cT^{\varepsilon}.$

Best possible statement for o-minimal expansions of $\overline{\mathbb{R}}$ in general (counterexample curve in \mathbb{R}_{an}).

Rational Points

Definable Function

(日) (同) (三) (三)

However, proposed improvement for \mathbb{R}_{exp} :

< □ > < □ > < □ > < □ > < □ > < □ >

Wilkie's Conjecture (2006)

For all sets X definable in \mathbb{R}_{exp} , there exist $c(X), \gamma(X) > 0$ such that

 $|X^{\text{trans}} \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, for $T \ge e$.

Theorem (Jones-T. 2010)

For $f: I \longrightarrow \mathbb{R}$ existentially definable in \mathbb{R}_{Pfaff} , with X := graph(f), there are $c(X), \gamma(X) > 0$ s.t. $|X^{trans} \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, for $T \ge e$.

Universität

However, proposed improvement for \mathbb{R}_{exp} :

Wilkie's Conjecture (2006)

For all sets X definable in \mathbb{R}_{exp} , there exist $c(X), \gamma(X) > 0$ such that

 $|X^{\text{trans}} \cap \mathbb{Q}^n(T)| \leq c(\log T)^{\gamma}$, for $T \geq e$.

Theorem (Jones-T. 2010)

For $f: I \longrightarrow \mathbb{R}$ existentially definable in \mathbb{R}_{Pfaff} , with X := graph(f), there are $c(X), \gamma(X) > 0$ s.t. $|X^{trans} \cap \mathbb{Q}^n(T)| \leq c(\log T)^{\gamma}$, for $T \geq e$.

In particular, this bound will hold for any function definable in any model complete reduct of \mathbb{R}_{Pfaff} - in particular in \mathbb{R}_{exp} .

Theorem (Jones-T. 2010; also Butler 2010)

Wilkie's Conjecture holds for any 1-dimensional set X.

Two results towards dimension 2.

э

イロト イヨト イヨト イヨト

Definable Functions

Universität

Two results towards dimension 2.

Combining methods of Pila for a certain surface with the

1-dimensional case and mild parameterization* for $\mathbb{R}_{an}\text{,}$ we have:

Theorem (Jones-T. 2010)

If $X \subseteq \mathbb{R}^n$ is a surface definable in $\mathbb{R}_{resPfaff}$, the real field expanded by all restricted Pfaffian functions, then there exist $c(X), \gamma(X) > 0$ such that $|X^{trans} \cap \mathbb{Q}^n(T)| \leq c(\log T)^{\gamma}$, for all $T \geq e$.

Theorem (Jones-T. 2010)

Wilkie's Conjecture holds for any surface X which admits a mild parameterization^{*}.

* Mild parameterization - a kind of covering by the images of finitely many functions with nice derivatives.

Definable Functions

< □ > < □ > < □ > < □ > < □ > < □ >

Universität Konstanz

First, the one variable version of the theorem.

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Definable Functions

Universitä

First, the one variable version of the theorem.

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof.

Wilkie's result for polynomially bounded functions + f analytic \Rightarrow enough to prove that f is algebraic.

Definable Functions

Universitä

First, the one variable version of the theorem.

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof.

Wilkie's result for polynomially bounded functions + f analytic \Rightarrow enough to prove that f is algebraic. So suppose that f is transcendental.

Definable Functions

Universitä

First, the one variable version of the theorem.

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof.

Wilkie's result for polynomially bounded functions + f analytic \Rightarrow enough to prove that f is algebraic. So suppose that f is transcendental. Then we have $c(X), \gamma(X) > 0$ s.t. $|X \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, for $T \ge e$, where $X = \operatorname{graph}(f)$. ctd...

Rational Points

Definable Functions

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix
$$\varepsilon < \frac{1}{\gamma}$$
.

Rational Points

Definable Functions

Universität Konstanz

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix $\varepsilon < \frac{1}{\gamma}$. We work in an interval (a, ∞) in which $f(x) < e^{x^{\varepsilon}}$.

Rational Points

Definable Functions

Universität

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix $\varepsilon < \frac{1}{\gamma}$. We work in an interval (a, ∞) in which $f(x) < e^{x^{\varepsilon}}$. Now we will fix a large $T \ge e$ and restrict attention to $(a, (\log T)^{\frac{1}{\varepsilon}})$.

Rational Points

Definable Functions

Universität Konstanz

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix $\varepsilon < \frac{1}{\gamma}$. We work in an interval (a, ∞) in which $f(x) < e^{x^{\varepsilon}}$. Now we will fix a large $T \ge e$ and restrict attention to $(a, (\log T)^{\frac{1}{\varepsilon}})$. Note $|X \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, but also choose T big enough that

Rational Points

Definable Functions

Universität Konstanz

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix $\varepsilon < \frac{1}{\gamma}$. We work in an interval (a, ∞) in which $f(x) < e^{x^{\varepsilon}}$. Now we will fix a large $T \ge e$ and restrict attention to $(a, (\log T)^{\frac{1}{\varepsilon}})$. Note $|X \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, but also choose T big enough that • $(\log T) \le T^{\varepsilon}$;

Rational Points

Definable Functions

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix $\varepsilon < \frac{1}{\gamma}$. We work in an interval (a, ∞) in which $f(x) < e^{x^{\varepsilon}}$. Now we will fix a large $T \ge e$ and restrict attention to $(a, (\log T)^{\frac{1}{\varepsilon}})$. Note $|X \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, but also choose T big enough that

•
$$(\log T) \leq T^{\varepsilon};$$

•
$$\left|\mathbb{N}\cap (a, (\log T)^{\frac{1}{\varepsilon}})\right| > c(\log T)^{\gamma}.$$

Rational Points

Definable Functions

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix $\varepsilon < \frac{1}{\gamma}$. We work in an interval (a, ∞) in which $f(x) < e^{x^{\varepsilon}}$. Now we will fix a large $T \ge e$ and restrict attention to $(a, (\log T)^{\frac{1}{\varepsilon}})$. Note $|X \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, but also choose T big enough that • $(\log T) \le T^{\varepsilon}$; • $\left| \mathbb{N} \cap (a, (\log T)^{\frac{1}{\varepsilon}}) \right| > c(\log T)^{\gamma}$.

Then $n \in \mathbb{N} \cap (a, (\log T)^{\frac{1}{\varepsilon}}) \Rightarrow n < (\log T)^{\frac{1}{\varepsilon}} \le T$ and $f(n) < e^{n^{\varepsilon}} \le T$

Rational Points

Definable Functions

Universität Konstanz

Proposition (Jones-T.-Wilkie 2011)

Let $f: (0,\infty) \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(n) \in \mathbb{Z}$, for all $n \in \mathbb{N}$. If, for all $\varepsilon > 0$, ultimately $f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof ctd.

Fix $\varepsilon < \frac{1}{\gamma}$. We work in an interval (a, ∞) in which $f(x) < e^{x^{\varepsilon}}$. Now we will fix a large $T \ge e$ and restrict attention to $(a, (\log T)^{\frac{1}{\varepsilon}})$. Note $|X \cap \mathbb{Q}^n(T)| \le c(\log T)^{\gamma}$, but also choose T big enough that • $(\log T) \le T^{\varepsilon}$; • $\left|\mathbb{N} \cap (a, (\log T)^{\frac{1}{\varepsilon}})\right| > c(\log T)^{\gamma}$. Then $n \in \mathbb{N} \cap (a, (\log T)^{\frac{1}{\varepsilon}}) \Rightarrow n < (\log T)^{\frac{1}{\varepsilon}} \le T$ and $f(n) < e^{n^{\varepsilon}} \le T$ i.e. $H((n, f(n))) \le T$. Contradiction.

Theorem (Jones-T.-Wilkie 2011)

Let $f: [0,\infty)^k \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}^k) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $M_f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Rational Points

Definable Functions

Definable Functions

Proof of Theorem.

Let $f: [0,\infty)^k \to \mathbb{R}$ be analytic, definable in \mathbb{R}_{exp} , have $f(\mathbb{N}^k) \subseteq \mathbb{Z}$ and $M_f(r) < \exp(r^{\varepsilon})$ ultimately, for all $\varepsilon > 0$.

Rational Points

Definable Functions

Proof of Theorem.

Let $f: [0,\infty)^k \to \mathbb{R}$ be analytic, definable in \mathbb{R}_{exp} , have $f(\mathbb{N}^k) \subseteq \mathbb{Z}$ and $M_f(r) < \exp(r^{\varepsilon})$ ultimately, for all $\varepsilon > 0$.

We can consider it as a function in polar coordinates definable in $\mathbb{R}_{exp,sin_{\uparrow [0,2\pi)}}$ (to which the above result also applies).

Rational Points

Definable Functions

Universitä

Proof of Theorem.

Let $f: [0,\infty)^k \to \mathbb{R}$ be analytic, definable in \mathbb{R}_{exp} , have $f(\mathbb{N}^k) \subseteq \mathbb{Z}$ and $M_f(r) < \exp(r^{\varepsilon})$ ultimately, for all $\varepsilon > 0$.

We can consider it as a function in polar coordinates definable in $\mathbb{R}_{\exp,\sin|_{[0,2\pi)}}$ (to which the above result also applies). For any fixed direction $\overline{\theta}$ with rational slope, f as a function of the radius r is a polynomial over $\overline{\mathbb{Q}} \cap \mathbb{R}$, by modifying the above.

Definable Functions

Universitä

Proof of Theorem.

Let $f: [0,\infty)^k \to \mathbb{R}$ be analytic, definable in \mathbb{R}_{exp} , have $f(\mathbb{N}^k) \subseteq \mathbb{Z}$ and $M_f(r) < \exp(r^{\varepsilon})$ ultimately, for all $\varepsilon > 0$.

We can consider it as a function in polar coordinates definable in $\mathbb{R}_{\exp,\sin|_{[0,2\pi)}}$ (to which the above result also applies). For any fixed direction $\overline{\theta}$ with rational slope, f as a function of the radius r is a polynomial over $\overline{\mathbb{Q}} \cap \mathbb{R}$, by modifying the above.

$$f(r,\bar{\theta}) = c_0(\bar{\theta}) + \ldots + c_{d(\bar{\theta})}(\bar{\theta})r^{d(\bar{\theta})}, \text{ with } c_i(\bar{\theta}) \in \overline{\mathbb{Q}} \cap \mathbb{R}, d(\bar{\theta}) \in \mathbb{N}.$$

Universitä

Proof of Theorem.

Let $f: [0,\infty)^k \to \mathbb{R}$ be analytic, definable in \mathbb{R}_{exp} , have $f(\mathbb{N}^k) \subseteq \mathbb{Z}$ and $M_f(r) < \exp(r^{\varepsilon})$ ultimately, for all $\varepsilon > 0$.

We can consider it as a function in polar coordinates definable in $\mathbb{R}_{\exp,\sin|_{[0,2\pi)}}$ (to which the above result also applies). For any fixed direction $\overline{\theta}$ with rational slope, f as a function of the radius r is a polynomial over $\overline{\mathbb{Q}} \cap \mathbb{R}$, by modifying the above.

$$f(r,\bar{\theta}) = c_0(\bar{\theta}) + \ldots + c_{d(\bar{\theta})}(\bar{\theta})r^{d(\bar{\theta})}, \text{ with } c_i(\bar{\theta}) \in \overline{\mathbb{Q}} \cap \mathbb{R}, d(\bar{\theta}) \in \mathbb{N}.$$

Since the exponent map is definable, it is piecewise continuous (take a cell decomposition). It takes natural number values at directions with rational slope and is therefore constant on each open cell, with some bound $d(\bar{\theta}) \leq d \in \mathbb{N}$. ctd...

Rational Points

Definable Functions

Universitä

Theorem (Jones-T.-Wilkie 2011)

Let $f: [0,\infty)^k \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}^k) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $M_f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof of Theorem ctd.

We can apply the same process iteratively to $f(r,\bar{\theta}) - c_d(\bar{\theta})r^d$ etc. to show that f can be represented as $f(r,\bar{\theta}) = c_0(\bar{\theta}) + \ldots + c_d(\bar{\theta})r^d$, except possibly on a set of directions of lower dimension.

Rational Points

Definable Functions

Universitä

Theorem (Jones-T.-Wilkie 2011)

Let $f: [0,\infty)^k \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}^k) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $M_f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof of Theorem ctd.

We can apply the same process iteratively to $f(r,\bar{\theta}) - c_d(\bar{\theta})r^d$ etc. to show that f can be represented as $f(r,\bar{\theta}) = c_0(\bar{\theta}) + \ldots + c_d(\bar{\theta})r^d$, except possibly on a set of directions of lower dimension. Because f is analytic, the coefficients $c_i(\bar{\theta})$ are bounded, and hence f has polynomial growth in the radius.

Rational Points

Definable Functions

Universitä

Theorem (Jones-T.-Wilkie 2011)

Let $f: [0,\infty)^k \to \mathbb{R}$ be a function definable in \mathbb{R}_{exp} , which is analytic and such that $f(\mathbb{N}^k) \subseteq \mathbb{Z}$. If, for all $\varepsilon > 0$, ultimately $M_f(t) < \exp(t^{\varepsilon})$, then f is a polynomial over \mathbb{Q} .

Proof of Theorem ctd.

We can apply the same process iteratively to $f(r, \bar{\theta}) - c_d(\bar{\theta})r^d$ etc. to show that f can be represented as $f(r, \bar{\theta}) = c_0(\bar{\theta}) + \ldots + c_d(\bar{\theta})r^d$, except possibly on a set of directions of lower dimension. Because f is analytic, the coefficients $c_i(\bar{\theta})$ are bounded, and hence f has polynomial growth in the radius. We can then show that it must be a polynomial over $\overline{\mathbb{Q}} \cap \mathbb{R}$ (and hence over \mathbb{Q}).