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I will describe a fascinating mathematical object, the �eld T of

transseries. It is an ordered di�erential �eld extension of R and is a

kind of universal domain for real di�erential algebra.

Conjecture: the elementary theory of T is model complete, and is

the model companion of the theory of H-�elds.

After discussing T we introduce H-�elds, and then sketch some

partial results towards this conjecture.

(Joint work with Aschenbrenner and van der Hoeven)



Reminder on Laurent series
The ordered di�erential �eld R((x−1)) of formal Laurent series in

descending powers of x over R consists of all series of the form

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x︸ ︷︷ ︸
in�nite part of f

+ a0 + a−1x
−1 + a−2x

−2 + · · ·︸ ︷︷ ︸
�nite part of f

x > R for the ordering, x ′ = 1 for the derivation. Defects:

I x−1 has no antiderivative log x in R((x−1)) .

I There is no natural exponentiation de�ned on all of R((x−1));
such an operation should satisfy exp x > xn for all n.

Exponentiation does make sense for the �nite elements of R((x−1)):

exp(a0 + a−1x
−1 + a−2x

−2 + · · · )

=ea0
∞∑
n=0

1

n!
(a−1x

−1 + a−2x
−2 + · · · )n

=ea0(1 + b1x
−1 + b2x

−2 + · · · )



The �eld of transseries

To remove these defects we extend R((x−1)) to an ordered

di�erential �eld T of transseries: series of transmonomials ( or

logarithmic-exponential monomials) arranged from left to right in

decreasing order and multiplied by real coe�cients, for example

ee
x−3ex2 +5x1/2−log x+1+x−1+x−2+x−3+· · ·+e−x +x−1e−x .

The reversed order type of the set of transmonomials that occur in

a given transseries series can be any countable ordinal. (For the

series displayed it is ω + 2.) Such series occur for example in

solving implicit equations of the form P(x , y , ex , ey ) = 0 for y as

x → +∞, where P is a polynomial in 4 variables over R. The
Stirling expansion for the Gamma function is also a transseries.

Transseries also arise naturally as formal solutions to algebraic

di�erential equations.



Transseries
Some typical computations in T:

I Taking a reciprocal

1

x − x2e−x
=

1

x(1− xe−x)
= x−1(1 + xe−x + x2e−2x + · · · )

= x−1 + e−x + xe−2x + · · ·

I Formal Integration∫
ex

x
dx = constant +

∞∑
n=0

n!x−1−nex ( diverges).

I Formal Composition

Let f (x) = x + log x and g(x) = x log x . Then

f (g(x)) = x log x + log(x log x)

= x log x + log x + log(log x)



Transseries

I Formal Composition continued

g(f (x)) = (x + log x) log(x + log x)

= x log x + (log x)2 + (x + log x)
∞∑
n=1

(−1)n+1

n

( log x
x

)n
= x log x + (log x)2 + log x +

∞∑
n=1

(−1)n+1

n(n + 1)

(log x)n+1

xn
.

I Compositional Inversion

The transseries g(x) = x log x has a compositional inverse of

the form
x

log x

(
1 + F

( log log x
log x

,
1

log x

))
where F (X ,Y ) is an ordinary convergent power series in the

two variables X and Y over R.



Properties of T

Some key properties of T: it is a real closed ordered �eld extension

of R, and is equipped with natural operations of exponentiation

(exp) and (termwise) di�erentiation, f 7→ f ′, such that

exp(T) = T>0, {f ′ : f ∈ T} = T, {f ∈ T : f ′ = 0} = R.

As an exponential ordered �eld T is an elementary extension of the

real exponential �eld. The iterated exponentials

x , exp x , exp(exp(x)), . . .

are co�nal in the ordering of T.



Some Écalle quotes

It seems that the algebra Tas of accelero-summable transseries is

truly the algebra-from-which-one-can-never-exit and that it marks

an almost impassable horizon for "ordered analysis" . (This sector

of analysis is in some sense �orthogonal� to harmonic analysis)

It seems (but I have not yet veri�ed this in all generalityl) that Tas

is closed under resolution of di�erential equations, or, more exactly,

that if a di�erential equation has formal solutions in T, then these

solutions are automatically in Tas

Cette notion de fonction analysable représente probablement

l'extension ultime de la notion de fonction analytique (réelle) et elle

parait inclusive et stable á un degre inouï



Conjectures about T

From now on we consider T as an ordered di�erential �eld.

Conjecture 1: T is model complete.

Conjecture 2: If X ⊆ Tn is de�nable, then X ∩ Rn is semialgebraic.

Conjecture 3: T is asymptotically o-minimal, that is, for each

de�nable X ⊆ T either all su�ciently large f ∈ T are in X , or all

su�ciently large f ∈ T are outside X .

Conjecture 4: T has NIP



Positive evidence

Asymptotic o-minimality holds for quanti�er-free de�nable X ⊆ T.

Best evidence for model-completeness of T: the detailed analysis by

van der Hoeven in �Transseries and Real Di�erential Algebra"

(Springer Lecture Notes 1888) of the set of zeros in T of any given

di�erential polynomial in one variable over T. He proved:

Theorem
Given any di�erential polynomial P(Y ) ∈ T{Y } and f , h ∈ T with

P(f ) < 0 < P(h), there is g ∈ T with f < g < h and P(g) = 0.

Here and later K{Y } = K [Y ,Y ′,Y ′′, . . . ] is the ring of di�erential

polynomials in the indeterminate Y over a di�erential �eld K .



Linear di�erential operators over T

Another analogy with the real �eld is that linear di�erential

operators over T behave much like one-variable polynomials over R.
A linear di�erential operator over T is an operator

A = a0 + a1∂ + · · ·+ an∂
n on T (∂ = the derivation, all ai ∈ T);

it de�nes the same function on T as the di�erential polynomial

a0Y + a1Y
′ + · · ·+ anY

(n). The linear di�erential operators over T
form a noncommutative ring under composition.

Theorem
Each linear di�erential operator over T of order n > 0 is surjective

as a map T→ T, and is a product (composition) of operators

a + b∂ of order 1 and operators a + b∂ + c∂2 of order 2.



The role of H-�elds

Abraham Robinson taught us to think about model completeness in

an algebraic way. Accordingly, we introduce a class of ordered

di�erential �elds, the so-called H-�elds. These are de�ned so as to

share certain basic (universal) properties with T. The challenge is

then to show that the �existentially closed� H-�elds are exactly the

H-�elds that share certain deeper �rst-order properties with T. If
we can achieve this, then T will be model complete.

An H-�eld K is existentially closed if every di�erential polynomial

over K with a zero in an H-�eld extension of K has a zero in K .



H-�elds

Let K be an ordered di�erential �eld, and put

C = {a ∈ K : a′ = 0} (constant �eld of K )

O = {a ∈ K : |a| ≤ c for some c ∈ C>0} (convex hull of C in K )

m(O) = {a ∈ K : |a| < c for all c ∈ C>0} (maximal ideal of O)

We call K an H-�eld if the following conditions are satis�ed:

(H1) O = C + m(O),

(H2) a > C =⇒ a′ > 0,

(H3) a ∈ m(O) =⇒ a′ ∈ m(O).

Examples of H-�elds: Hardy �elds containing R such as R(x , ex),
the ordered di�erential �eld R((x−1)) of Laurent series, T.



Liouville closed H-�elds

Notation: z† := z ′/z for nonzero z in a di�erential �eld.

The real closure of an H-�eld is again an H-�eld. Call an H-�eld K

Liouville closed if it is real closed and for all a ∈ K there are

y , z ∈ K such that y ′ = a and z 6= 0, z† = a. For example, T is

Liouville closed. A Liouville closure of an H-�eld K is a minimal

Liouville closed H-�eld extension of K .

Theorem
Each H-�eld has exactly one or exactly two Liouville closures.

Whether we have one or two Liouville closures is controlled by a key

trichotomy in the class of H-�elds. We discuss this in the next slide.



Trichotomy for H-�elds

Any H-�eld K comes with a de�nable valuation v whose valuation

ring is the convex hull O of C . Let Γ be the value group of v and

Γ∗ := Γ \ {0}. The derivation of K induces a function

γ = v(a) 7→ γ′ = v(a′) : Γ∗ → Γ

and we put Γ† := {γ′ − γ : γ ∈ Γ∗}. Then Γ† < (Γ>0)′, and
exactly one of the following holds:

1. Γ† < γ < (Γ>0)′ for some (necessarily unique) γ;

2. Γ† has a largest element;

3. sup Γ† does not exist; equivalently, Γ = (Γ∗)′

If K = C we are in case 1, R((x−1)) falls under case 2, and Liouville

closed H-�elds under case 3. In case 1 there are two Liouville

closures of K , and in case 2 there is only one.



Immediate Extensions of H-�elds

An H-�eld falling under case 3 is said to admit asymptotic

integration. For a long time we couldn't prove that every H-�eld

has a case 1 extension. We only knew it for maximally valued

H-�elds with asymptotic integration. But two years ago we showed:

Theorem
Every real closed H-�eld with asymptotic integration has an

immediate H-�eld extension that is maximally valued.

Complication: such an extension is not in general unique.

Corollary

Each H-�eld has a case 1 extension (and thus a case 2 extension).



Compositional Conjugation

Let K be an H-�eld, with derivation ∂. Typically, a di�erential

polynomial P ∈ K{Y } becomes more accessible to analysis when

we make appropriate changes of variables. A key transformation of

this kind is to rewrite P in terms of a derivation φ−1∂ with

φ ∈ K×. The resulting di�erential �eld we call Kφ and P when

rewritten in terms of the new derivation is Pφ, so Pφ ∈ Kφ{Y }.
We restrict φ to be admissible in the sense that Kφ should still be

an H-�eld; equivalently, vφ < (Γ>0)′.

Theorem
Suppose K admits asymptotic integration and P ∈ K{Y } , P 6= 0.

Then there is a di�erential polynomial N(P) ∈ C{Y }, N(P) 6= 0,

such that for all admissible φ with su�ciently large vφ we have

Pφ = aN(P) + R, a ∈ K×, R ∈ Kφ{Y }, v(R) > v(a).

We call N(P) the Newton polyomial of P .



Di�erential-newtonian H-�elds

An important fact about T is that if the Newton polynomial of

P ∈ T{Y } has degree 1, then P has a zero in the valuation ring.

De�ne an H-�eld K to be di�erential-newtonian if it admits

asymptotic integration and every nonzero P ∈ K{Y } whose
Newton polynomial has degree 1 has a zero in the valuation ring.

Thus T is di�erential-newtonian.

If K is di�erential-newtonian, then every linear di�erential equation

a0y + a1y
′ + · · ·+ any

(n) = b over K has a solution in K .

There is also a related notion of di�erential-henselian: roughly,

di�erential-newtonian is equivalent to certain coarsenings of

compositional conjugates of K being di�erential-henselian.



Consequences for existentially closed H-�elds

Using the results on the previous slides, many known results about

T can now be shown to go through for existentially closed H-�elds.

For example, existentially closed H-�elds are Liouville closed and

di�erential-newtonian. In particular, every linear di�erential

equation over an existentially closed H-�eld can be solved.

Let A = a0 + a1∂ + · · ·+ an∂
n be a linear di�erential operator over

the di�erential �eld K ; here all ai ∈ K , and ∂ stands for the

derivation operator. These operators form a ring under

composition, with ∂a = a∂ + a′ for a ∈ K .

Theorem
If K is existentially closed and an 6= 0, then A : K → K is

surjective, and A is a product (composition) of operators a + b∂ of

order 1 and operators a + b∂ + c∂2 of order 2.



Simple Newton polynomials

The Newton polynomials of di�erential polynomials over T have

the very special form

(c0 + c1Y + · · ·+ cmY
m) · (Y ′)n (c0, . . . , cm ∈ R = C ).

This fails for some other H-�elds with asymptotic integration, and

we now understand better what makes it true. In T this has to do

with the iterated logarithms `n with

`0 = x , `n+1 = log `n.

This sequence is coinitial in T>R, and

−`††n =
1

`0
+

1

`0`1
+ · · ·+ 1

`0`1 · · · `n
.

Then (−`††n ) is a pc-sequence without a pseudolimit in T. (It does
have a pseudolimit

∑∞
n=0

1
`0`1···`n in an H-�eld extension of T.)



Another important pseudocauchy sequence

Set %(b) := (b†)2 − 2(b†)′. Then

%(`†n) =
1

`20
+

1

`20`
2
1

+ · · ·+ 1

`20`
2
1 · · · `2n

also gives a pc-sequence without pseudolimit in T. These facts can

be converted into elementary properties of T that seem to be key

to further model-theoretic analysis:

(A1) ∀a∃b
[
v(a − b†) ≤ vb < (Γ>0)′

]
;

(A2) ∀a∃b
[
v(a − %(b)) ≤ 2vb, vb < (Γ>0)′

]
.

A trouble-free H-�eld is one that is real closed, admits asymptotic

integration, and satis�es (A1) and (A2).



Trouble-free H-�elds

Theorem
For a real closed H-�eld with asymptotic integration, the following

are equivalent

I K is trouble-free;

I the Newton polynomial of any nonzero di�erential polynomial

P ∈ K{Y } has the form

(c0 + c1Y + · · ·+ cmY
m) · (Y ′)n (c0, . . . , cm ∈ C ).

Corollary

Let K be a trouble-free H-�eld and P ∈ K{Y }, P 6= 0. Then there

are α ∈ Γ, a ∈ K>C and m, n ∈ N such that

C < y < a =⇒ v(P(y)) = α + mvy + nvy ′

for all y in all H-�eld extensions of K.



More on Trouble-freeness

Fact: Every existentially closed H-�eld is trouble-free.

Conjecture: if K is a trouble-free H-�eld, then it has a unique

maximal immediate trouble-free H-�eld extension.

Optimistic Conjecture: An H-�eld K is existentially closed if and

only if K is Liouville closed, di�erential-newtonian, and trouble-free.
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