Model theory of transseries

Lou van den Dries

University of Illinois

June 6, 2011, Oleron-meeting

Outline

Transseries

H-fields

New Results

I will describe a fascinating mathematical object, the field \mathbb{T} of transseries. It is an ordered differential field extension of \mathbb{R} and is a kind of universal domain for real differential algebra.

Conjecture: the elementary theory of \mathbb{T} is model complete, and is the model companion of the theory of *H*-fields.

After discussing $\mathbb T$ we introduce H-fields, and then sketch some partial results towards this conjecture.

(Joint work with Aschenbrenner and van der Hoeven)

Reminder on Laurent series

The ordered differential field $\mathbb{R}((x^{-1}))$ of formal Laurent series in *descending* powers of x over \mathbb{R} consists of all series of the form

$$f(x) = \underbrace{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x}_{\text{infinite part of } f} + \underbrace{a_0 + a_{-1} x^{-1} + a_{-2} x^{-2} + \dots}_{\text{finite part of } f}$$

 $x > \mathbb{R}$ for the ordering, x' = 1 for the derivation. *Defects*:

- x^{-1} has no antiderivative log x in $\mathbb{R}((x^{-1}))$.
- ► There is no natural exponentiation defined on all of R((x⁻¹)); such an operation should satisfy exp x > xⁿ for all n.

Exponentiation does make sense for the *finite* elements of $\mathbb{R}((x^{-1}))$:

$$\exp(a_0 + a_{-1}x^{-1} + a_{-2}x^{-2} + \cdots)$$

= $e^{a_0} \sum_{n=0}^{\infty} \frac{1}{n!} (a_{-1}x^{-1} + a_{-2}x^{-2} + \cdots)^n$
= $e^{a_0} (1 + b_1x^{-1} + b_2x^{-2} + \cdots)$

The field of transseries

To remove these defects we extend $\mathbb{R}((x^{-1}))$ to an ordered differential field \mathbb{T} of *transseries*: series of *transmonomials* (or logarithmic-exponential monomials) arranged from left to right in decreasing order and multiplied by real coefficients, for example

$$e^{e^x} - 3e^{x^2} + 5x^{1/2} - \log x + 1 + x^{-1} + x^{-2} + x^{-3} + \dots + e^{-x} + x^{-1}e^{-x}$$

The reversed order type of the set of transmonomials that occur in a given transseries series can be any countable ordinal. (For the series displayed it is $\omega + 2$.) Such series occur for example in solving implicit equations of the form $P(x, y, e^x, e^y) = 0$ for y as $x \to +\infty$, where P is a polynomial in 4 variables over \mathbb{R} . The Stirling expansion for the Gamma function is also a transseries. Transseries also arise naturally as formal solutions to algebraic differential equations.

Transseries

Some typical computations in $\ensuremath{\mathbb{T}}$:

Taking a reciprocal

$$\frac{1}{x - x^2 e^{-x}} = \frac{1}{x(1 - x e^{-x})} = x^{-1}(1 + x e^{-x} + x^2 e^{-2x} + \cdots)$$
$$= x^{-1} + e^{-x} + x e^{-2x} + \cdots$$

Formal Integration

$$\int \frac{e^x}{x} \, dx = constant + \sum_{n=0}^{\infty} n! x^{-1-n} e^x \quad (\text{ diverges}).$$

• Formal Composition Let $f(x) = x + \log x$ and $g(x) = x \log x$. Then

$$f(g(x)) = x \log x + \log(x \log x)$$

= $x \log x + \log x + \log(\log x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Transseries

Formal Composition continued

$$g(f(x)) = (x + \log x) \log(x + \log x)$$

= $x \log x + (\log x)^2 + (x + \log x) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{\log x}{x}\right)^n$
= $x \log x + (\log x)^2 + \log x + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} \frac{(\log x)^{n+1}}{x^n}.$

Compositional Inversion

The transseries $g(x) = x \log x$ has a compositional inverse of the form

$$\frac{x}{\log x} \Big(1 + F\Big(\frac{\log\log x}{\log x}, \frac{1}{\log x}\Big) \Big)$$

where F(X, Y) is an ordinary convergent power series in the two variables X and Y over \mathbb{R} .

Properties of ${\mathbb T}$

Some key properties of \mathbb{T} : it is a real closed ordered field extension of \mathbb{R} , and is equipped with natural operations of *exponentiation* (exp) and (termwise) differentiation, $f \mapsto f'$, such that

$$\exp(\mathbb{T})=\mathbb{T}^{>0},\qquad \{f':f\in\mathbb{T}\}=\mathbb{T},\qquad \{f\in\mathbb{T}:\ f'=0\}=\mathbb{R}.$$

As an exponential ordered field ${\mathbb T}$ is an elementary extension of the real exponential field. The iterated exponentials

x,
$$\exp x$$
, $\exp(\exp(x))$,...

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

are cofinal in the ordering of \mathbb{T} .

Some Écalle quotes

It seems that the algebra \mathbb{T}^{as} of accelero-summable transseries is truly the algebra-from-which-one-can-never-exit and that it marks an almost impassable horizon for "ordered analysis". (This sector of analysis is in some sense "orthogonal" to harmonic analysis)

It seems (but I have not yet verified this in all generalityI) that \mathbb{T}^{as} is closed under resolution of differential equations, or, more exactly, that if a differential equation has formal solutions in \mathbb{T} , then these solutions are automatically in \mathbb{T}^{as}

Cette notion de fonction analysable représente probablement l'extension ultime de la notion de fonction analytique (réelle) et elle parait inclusive et stable á un degre inouï From now on we consider \mathbb{T} as an ordered differential field.

Conjecture 1: \mathbb{T} is model complete.

Conjecture 2: If $X \subseteq \mathbb{T}^n$ is definable, then $X \cap \mathbb{R}^n$ is semialgebraic.

Conjecture 3: \mathbb{T} is asymptotically o-minimal, that is, for each definable $X \subseteq \mathbb{T}$ either all sufficiently large $f \in \mathbb{T}$ are in X, or all sufficiently large $f \in \mathbb{T}$ are outside X.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conjecture 4: T has NIP

Asymptotic o-minimality holds for quantifier-free definable $X \subseteq \mathbb{T}$.

Best evidence for *model-completeness* of \mathbb{T} : the detailed analysis by van der Hoeven in "Transseries and Real Differential Algebra" (Springer Lecture Notes 1888) of the set of zeros in \mathbb{T} of any given differential polynomial in one variable over \mathbb{T} . He proved:

Theorem

Given any differential polynomial $P(Y) \in \mathbb{T}\{Y\}$ and $f, h \in \mathbb{T}$ with P(f) < 0 < P(h), there is $g \in \mathbb{T}$ with f < g < h and P(g) = 0.

Here and later $K{Y} = K[Y, Y', Y'', ...]$ is the ring of differential polynomials in the indeterminate Y over a differential field K.

Linear differential operators over ${\mathbb T}$

Another analogy with the real field is that linear differential operators over \mathbb{T} behave much like one-variable polynomials over \mathbb{R} . A linear differential operator over \mathbb{T} is an operator $A = a_0 + a_1\partial + \cdots + a_n\partial^n$ on \mathbb{T} ($\partial =$ the derivation, all $a_i \in \mathbb{T}$); it defines the same function on \mathbb{T} as the differential polynomial $a_0Y + a_1Y' + \cdots + a_nY^{(n)}$. The linear differential operators over \mathbb{T} form a noncommutative ring under composition.

Theorem

Each linear differential operator over \mathbb{T} of order n > 0 is surjective as a map $\mathbb{T} \to \mathbb{T}$, and is a product (composition) of operators $a + b\partial$ of order 1 and operators $a + b\partial + c\partial^2$ of order 2. Abraham Robinson taught us to think about model completeness in an algebraic way. Accordingly, we introduce a class of ordered differential fields, the so-called *H*-fields. These are defined so as to share certain basic (universal) properties with \mathbb{T} . The challenge is then to show that the "existentially closed" *H*-fields are exactly the *H*-fields that share certain deeper first-order properties with \mathbb{T} . If we can achieve this, then \mathbb{T} will be model complete.

An *H*-field K is *existentially closed* if every differential polynomial over K with a zero in an *H*-field extension of K has a zero in K.

H-fields

Let K be an ordered differential field, and put

$$C = \{a \in K : a' = 0\}$$
(constant field of K)
$$\mathcal{O} = \{a \in K : |a| \le c \text{ for some } c \in C^{>0}\}$$
(convex hull of C in K)
$$\mathfrak{m}(\mathcal{O}) = \{a \in K : |a| < c \text{ for all } c \in C^{>0}\}$$
(maximal ideal of \mathcal{O})

We call K an H-field if the following conditions are satisfied: (H1) $\mathcal{O} = \mathcal{C} + \mathfrak{m}(\mathcal{O}),$ (H2) $a > \mathcal{C} \implies a' > 0,$ (H3) $a \in \mathfrak{m}(\mathcal{O}) \implies a' \in \mathfrak{m}(\mathcal{O}).$

Examples of *H*-fields: Hardy fields containing \mathbb{R} such as $\mathbb{R}(x, e^x)$, the ordered differential field $\mathbb{R}((x^{-1}))$ of Laurent series, \mathbb{T} .

Liouville closed H-fields

Notation: $z^{\dagger} := z'/z$ for nonzero z in a differential field.

The real closure of an *H*-field is again an *H*-field. Call an *H*-field *K* Liouville closed if it is real closed and for all $a \in K$ there are $y, z \in K$ such that y' = a and $z \neq 0$, $z^{\dagger} = a$. For example, \mathbb{T} is Liouville closed. A Liouville closure of an *H*-field *K* is a minimal Liouville closed *H*-field extension of *K*.

Theorem

Each H-field has exactly one or exactly two Liouville closures.

Whether we have one or two Liouville closures is controlled by a key trichotomy in the class of *H*-fields. We discuss this in the next slide.

Trichotomy for *H*-fields

Any *H*-field *K* comes with a definable valuation *v* whose valuation ring is the convex hull \mathcal{O} of *C*. Let Γ be the value group of *v* and $\Gamma^* := \Gamma \setminus \{0\}$. The derivation of *K* induces a function

$$\gamma = v(a) \mapsto \gamma' = v(a') \; : \; \Gamma^* \to \Gamma$$

and we put $\Gamma^{\dagger} := \{\gamma' - \gamma : \gamma \in \Gamma^*\}$. Then $\Gamma^{\dagger} < (\Gamma^{>0})'$, and exactly one of the following holds:

- 1. $\Gamma^{\dagger} < \gamma < (\Gamma^{>0})'$ for some (necessarily unique) γ ;
- 2. Γ^{\dagger} has a largest element;

3. sup Γ^{\dagger} does not exist; equivalently, $\Gamma = (\Gamma^*)'$ If K = C we are in case 1, $\mathbb{R}((x^{-1}))$ falls under case 2, and Liouville closed *H*-fields under case 3. In case 1 there are two Liouville closures of *K*, and in case 2 there is only one.

Immediate Extensions of H-fields

An *H*-field falling under case 3 is said to admit asymptotic integration. For a long time we couldn't prove that every *H*-field has a case 1 extension. We only knew it for *maximally valued H*-fields with asymptotic integration. But two years ago we showed:

Theorem

Every real closed H-field with asymptotic integration has an immediate H-field extension that is maximally valued.

Complication: such an extension is not in general unique.

Corollary

Each H-field has a case 1 extension (and thus a case 2 extension).

Compositional Conjugation

Let K be an H-field, with derivation ∂ . Typically, a differential polynomial $P \in K\{Y\}$ becomes more accessible to analysis when we make appropriate changes of variables. A key transformation of this kind is to rewrite P in terms of a derivation $\phi^{-1}\partial$ with $\phi \in K^{\times}$. The resulting differential field we call K^{ϕ} and P when rewritten in terms of the new derivation is P^{ϕ} , so $P^{\phi} \in K^{\phi}\{Y\}$. We restrict ϕ to be *admissible* in the sense that K^{ϕ} should still be an H-field; equivalently, $v\phi < (\Gamma^{>0})'$.

Theorem

Suppose K admits asymptotic integration and $P \in K\{Y\}$, $P \neq 0$. Then there is a differential polynomial $N(P) \in C\{Y\}$, $N(P) \neq 0$, such that for all admissible ϕ with sufficiently large $v\phi$ we have

$$\mathcal{P}^{\phi} = a \mathcal{N}(\mathcal{P}) + \mathcal{R}, \qquad a \in \mathcal{K}^{ imes}, \ \mathcal{R} \in \mathcal{K}^{\phi}\{Y\}, \ \mathcal{v}(\mathcal{R}) > \mathcal{v}(a).$$

We call N(P) the Newton polyomial of P.

Differential-newtonian H-fields

An important fact about \mathbb{T} is that if the Newton polynomial of $P \in \mathbb{T}{Y}$ has degree 1, then P has a zero in the valuation ring.

Define an *H*-field *K* to be *differential-newtonian* if it admits asymptotic integration and every nonzero $P \in K\{Y\}$ whose Newton polynomial has degree 1 has a zero in the valuation ring. Thus \mathbb{T} is differential-newtonian.

If K is differential-newtonian, then every linear differential equation $a_0y + a_1y' + \cdots + a_ny^{(n)} = b$ over K has a solution in K.

There is also a related notion of *differential-henselian*: roughly, differential-newtonian is equivalent to certain coarsenings of compositional conjugates of K being differential-henselian.

Consequences for existentially closed H-fields

Using the results on the previous slides, many known results about \mathbb{T} can now be shown to go through for existentially closed *H*-fields. For example, existentially closed *H*-fields are Liouville closed and differential-newtonian. In particular, every linear differential equation over an existentially closed *H*-field can be solved.

Let $A = a_0 + a_1\partial + \cdots + a_n\partial^n$ be a *linear differential operator* over the differential field K; here all $a_i \in K$, and ∂ stands for the derivation operator. These operators form a ring under composition, with $\partial a = a\partial + a'$ for $a \in K$.

Theorem

If K is existentially closed and $a_n \neq 0$, then $A : K \rightarrow K$ is surjective, and A is a product (composition) of operators $a + b\partial$ of order 1 and operators $a + b\partial + c\partial^2$ of order 2.

Simple Newton polynomials

The Newton polynomials of differential polynomials over $\ensuremath{\mathbb{T}}$ have the very special form

$$(c_0+c_1Y+\cdots+c_mY^m)\cdot (Y')^n$$
 $(c_0,\ldots,c_m\in\mathbb{R}=C).$

This fails for some other *H*-fields with asymptotic integration, and we now understand better what makes it true. In \mathbb{T} this has to do with the iterated logarithms ℓ_n with

$$\ell_0 = x, \quad \ell_{n+1} = \log \ell_n.$$

This sequence is coinitial in $\mathbb{T}^{>\mathbb{R}}$, and

$$-\ell_n^{\dagger\dagger} = \frac{1}{\ell_0} + \frac{1}{\ell_0\ell_1} + \dots + \frac{1}{\ell_0\ell_1\dots\ell_n}$$

Then $(-\ell_n^{\dagger\dagger})$ is a pc-sequence without a pseudolimit in \mathbb{T} . (It does have a pseudolimit $\sum_{n=0}^{\infty} \frac{1}{\ell_0 \ell_1 \cdots \ell_n}$ in an *H*-field extension of \mathbb{T} .)

Another important pseudocauchy sequence

Set
$$\varrho(b) := (b^{\dagger})^2 - 2(b^{\dagger})'$$
. Then
 $\varrho(\ell_n^{\dagger}) = \frac{1}{\ell_0^2} + \frac{1}{\ell_0^2 \ell_1^2} + \dots + \frac{1}{\ell_0^2 \ell_1^2 \dots \ell_n^2}$

also gives a pc-sequence without pseudolimit in \mathbb{T} . These facts can be converted into elementary properties of \mathbb{T} that seem to be key to further model-theoretic analysis:

(A1)
$$\forall a \exists b [v(a-b^{\dagger}) \leq vb < (\Gamma^{>0})'];$$

(A2) $\forall a \exists b [v(a-\varrho(b)) \leq 2vb, vb < (\Gamma^{>0})'].$

A *trouble-free H*-field is one that is real closed, admits asymptotic integration, and satisfies (A1) and (A2).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Trouble-free *H*-fields

Theorem

For a real closed H-field with asymptotic integration, the following are equivalent

- K is trouble-free;
- ► the Newton polynomial of any nonzero differential polynomial P ∈ K{Y} has the form

$$(c_0+c_1Y+\cdots+c_mY^m)\cdot (Y')^n \qquad (c_0,\ldots,c_m\in C).$$

Corollary

Let K be a trouble-free H-field and $P \in K\{Y\}$, $P \neq 0$. Then there are $\alpha \in \Gamma$, $a \in K^{>C}$ and $m, n \in \mathbb{N}$ such that

$$C < y < a \implies v(P(y)) = \alpha + mvy + nvy'$$

ション ふゆ く 山 マ チャット しょうくしゃ

for all y in all H-field extensions of K.

Fact: Every existentially closed *H*-field is trouble-free.

Conjecture: if K is a trouble-free H-field, then it has a unique maximal immediate trouble-free H-field extension.

Optimistic Conjecture: An H-field K is existentially closed if and only if K is Liouville closed, differential-newtonian, and trouble-free.