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notation

In a valued field K with valuation v : K → Γ, write

O = {x ∈ K : v(x) ≥ 0} = valuation ring,

m = {x ∈ K : v(x) > 0} = maximal ideal,

k = O/m = residue field,

RV = K∗/(1 + m).

Recall that 1 → k∗ → RV → Γ → 0 is a short exact sequence:

b(1 + m) = b′(1 + m) ⇐⇒ b′/b ∈ 1 + m

⇐⇒ v(b′/b− 1) > 0

⇐⇒ v(b− b′) > v(b′).
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quantifier elimination

Fix Lv a language for valued fields and with respect to which the appropriate
theory has quantifier elimination. We can include the valuation for example
with a div relation:

div(x, y) ⇐⇒ v(x) ≤ v(y).

ACVF Lv = (+, ·, 0, 1, div); theory has QE by A. Robinson (1956)

pCF Lv = (+, ·, 0, 1, {Pn}, div), where Pn(x) ⇐⇒ ∃y(yn = x); theory
has QE by A. Macintyre (1976)

RCVF Lv = (+, ·, 0, 1, <, div); theory has QE by Cherlin-Dickmann
(1983)
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elimination of imaginaries

Add G, an infinite family of sorts consisting of S ∪ T :

O-modules
Define an equivalence relation on linearly independent n-tuples from Kn by
(a1, . . . , an) ∼ (b1, . . . , bn) if and only if (a1, . . . , an) and (b1, . . . , bn)
generate the same O-submodule of Kn. The sort Sn is the sort of the
equivalence classes of this equivalence relation; S =

⋃
n Sn.

Notice that

Γ is identified with S1; γ is identified with the equivalence class s of
elements a of K with v(a) = γ.
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elimination of imaginaries

torsors
For each s ∈ Sn there is As ⊂ Kn which is the O-module coded by s. Define
an equivalence relation on As by a ∼ b if and only if a− b ∈ mAs. We write
red(s) for the set of equivalence classes of this equivalence relation, and the
sort Tn is the union of all red(s) for s ∈ Sn; T =

⋃
n Tn. Thus an element t of

Tn codes the subset of the field a + mAs, where a ∈ As.

Notice that

k is identified with the subset red(s0) of T1, where s0 is the code for O.

for each γ ∈ Γ, red(sγ) = Asγ/mAsγ = γO/γm ' k

RV is identified with the subset of T1 given by
{t ∈ T1 : t codes a + mAs for a ∈ As \mAs}.
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elimination of imaginaries

The following theories have elimination of imaginaries in (Lv,G), for the
appropriate Lv as described above.

ACVF Haskell–Hrushovski–Macpherson (2006)

RCVF Mellor (2006)

pCF (In this case, the Tn sorts are not needed.) Hrushovski–Martin
(arxiv)
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analytic structure: p-adics

Let

An = {f ∈ Zp[[X1, . . . , Xn]] : coefficients have valuation converging to ∞}.

If f ∈ An, then f defines a function Zn
p → Zp.

Write Lv,an for the language Lv with function symbols for every function
defined by a power series in A =

⋃
nAn.

Interpret each function symbol by the function on Zp defined by the power
series.
Write pCFan for the theory of Qp in Lv,an.

Denef–van den Dries (1988)
pCFan is model complete, and has quantifier elimination in Lv,an with a
symbol added for a partial division function to the valuation ring.
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analytic structure: algebraically closed valued field

Let K0 be a complete rank one valued field. Let

An = {f ∈ K0[[X1, . . . , Xn]] : coefficients have valuation converging to ∞}.

If f ∈ An, then f defines a function mn(K0) → K0. For functions on On(K0),
we require tighter restrictions on the rate of convergence of the power series.
Use two sorts of variables, ranging over the valuation ring and the maximal
ideal; still write A for this more restricted collection of power series.

Write Lv,an for the language Lv with function symbols for every function
defined by a power series in A, and ACVFan for the theory of K0 in Lv,an.

Lipshitz (1993)
ACVFan is model complete, and has quantifier elimination in Lv,an with
symbols added for partial division functions to the valuation ring and maximal
ideal.
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analytic structure: real closed valued field

Write Lan for the language of real closed fields with function symbols for
every function which is analytic in a neighborhood of [−1, 1]n (interpreted in
R by the restricted analytic function which is 0 outside of [−1, 1]n) and in
which the theory of Ran is universally axiomatised. Let K be a non-standard
model of the theory of R in Lan, and let Lan,v be a language with a predicate
for the set of finite elements (a valuation ring) of K. Then the theory of K in
this language is an example of a T-convex theory; call it RCVFan.

van den Dries–Lewenberg (1995)
RCVFan has quantifier elimination in Lan,v.
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analytic quantifier elimination

Furthermore, each of the above analytic theories is minimal in the appropriate
sense; that is, in all models of the theory, definable sets in one variable are
quantifier-free definable with the ‘minimal’ predicates:

RCVFan: the valuation and the ordering (weakly o-minimal) van den
Dries–Lewenberg (1995)

ACVFan: just the valuation (C-minimal) Lipshitz–Z. Robinson (1998)

pCFan: the Pn predicates and the field structure (P-minimal) van den
Dries–Haskell–Macpherson (1999)
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analytic quantifier elimination

Generalization of all of the above settings provided by Cluckers–Lipshitz
(2010)
Form a ring of quotients of power series A by:

Begin with a ring of power series in arbitrarily many variables (possibly
split into two sorts)

Close under composition, restricted division

Close under Weierstrass preparation

Add function symbols to the language for the functions on Om ×mn defined
by the function symbols in A.
Cluckers–Lipshitz develop the theory of analytic functions on a quasi-affinoid
domain relative to A.
One important result is that an analytic function on a K-domain can be written
as a unit times a rational function.
This result used to prove quantifier elimination (much as Weierstrass
preparation is used in the classic Denef–van den Dries style argument).
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analytic elimination of imaginaries?

Question
Does the analytic theory have elimination of imaginaries in (Lv,an,G)?

Answer: (Haskell-Hrushovski-Macpherson)
No.

Example of an (Lv,A)-definable imaginary which is not coded in G (provided
A contains the power series for restricted exponential and logarithm).

We’ll go through the example carefully for pCFan, and indicate briefly the
differences for ACVFan.
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where to look for such an imaginary?

at least two variables

be analytically, and not algebraically, defined

have some group structure
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exponentiation

Note that the power series

G(X) =
∞∑

n=0

pn

n!
Xn

has coefficients with valuation converging to ∞ and hence is in A1.
Also

exp(x) = G(p−1x) for any x ∈ m

so the function exp : m → 1 + m is Lv,an-definable.
Furthermore, the graph of exp

{(x, exp(x)) : x ∈ m}

is a subgroup of (m,+)× (1 + m, ·).
To construct a definable set which is not coded, just need to take this set and
make it more generic.

Deirdre Haskell (McMaster University) Unexpected imaginaries Ile d’Oleron 14 / 25



moving between sorts and subsets of the field

Fix M an ω-saturated model of pCFan, U a monster model.
For any set of parameters C, write O(C) = dcl(C)∩O, and so on for all other
sorts.

Fix γ ∈ Γ(M) (so γ = v(c) for some c ∈ K(M)) with γ greater than all
integers. Write

W = O(M)/γO(M)

and for w ∈ W, write

Aw = a + γO = {x ∈ K : v(x− a) ≥ γ}.

Notice that, if w ∈ W with w /∈ acl(C), then there are no elements of Aw

which are algebraic over Cw (by P-minimality).
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moving between sorts and subsets of the field

For any r ∈ RV, write

Br = b(1 + m) = {x ∈ K : v(x− b) > v(b)}.

Let q be the Aut(U)-invariant partial type determined by the formulas x > δ
for all δ ∈ Γ(U).

Now assume that r ∈ RV is such that v(r) |= q.

If r /∈ acl(C) then there are no elements of Br which are algebraic over Cr (by
P-minimality).
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the example

Define an affine homomorphism from Aw to Br by:

hab : Aw → Br

hab(x) = b exp(pc−1(x− a))

The graph of hab is

{(a + y, b exp(pc−1y) : y ∈ γO} = {(a, b) ∗ (y, exp(pc−1y)) : y ∈ γO}

and thus is a coset of a subgroup of (γO,+)× (1 + m, ·).
Then the graph of hab is not coded in G.
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justification of the example

Suppose for contradiction that there is a finite tuple in G which is a code for
the graph of h = hab. This tuple must be (w, r, e1, e2) where e1 is a finite tuple
from K, e2 is a finite tuple from the other sorts.
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justification of the example: h coded in K over w, r

Let C ⊇ acl(Mwr) be such that there is another affine homomorphism
g : Aw → Br with the same homogeneous component as h and defined over C.
Then g(x) = b′ exp(pc−1(x− a′)) where a′ ∈ Aw(C), b′ ∈ Br(C).

Consider the function log(g/h) : Aw → m, where log : 1 + m → m is the
inverse of exp.

log(g/h)(x) = log
(

b′ exp(pc−1(x− a′))
b exp(pc−1(x− a))

)
= log(b/b′) + (a− a′)

= d ∈ m.

Thus g(x) = exp(d)h(x), so h is coded over C by exp(d) ∈ K.

The map e2 → exp(d) is C-definable from the sort of e2 to K.
But any definable map from a non-field sort to the field has finite image and
hence cannot be a code. Thus e2 is in acl(Mwre1).
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hence cannot be a code. Thus e2 is in acl(Mwre1).
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justification of the example: one of two cases

Furthermore, dim(e1/M) = dim(d/C) = 1, so by Skolem functions, we may
assume that e1 = e is a single field element.
(Dimension here is in the sense of model theoretic algebraic closure, which
has the exchange property in pCFan.)

Case 1: w /∈ acl(Me)

Case 2: w ∈ acl(Me)
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justification of the example: case 1 w /∈ acl(Me)

Then also w /∈ acl(Mer).

For otherwise, we would have w ∈ acl(Mev(r)), hence (using Skolem
functions) w ∈ dcl(Mev(r)). But then there would be a definable function
from the ordered set Γ to the anti-chain W, which is not possible by
P-minimality.

Choose b′ ∈ Br so that w /∈ acl(Meb′r).
Then no element of Aw is algebraic over Meb′rw.
But h−1 ∈ acl(Merw), so h−1(b′) is an algebraic element of Aw over
Meb′rw. Contradiction.
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justification of the example: case 2 w ∈ acl(Me)

Then v(r) |= q|Mew.

For if not, then v(r) is finite with respect to Γ(Me); that is, v(r) = v(d) for
some d ∈ K(acl(Me)). Using algebraic exchange and some care, get
w ∈ acl(M), contrary to hypothesis.

Hence v(r) /∈ acl(Mew), so r /∈ acl(Mew).

Choose a′ ∈ Aw so that r /∈ acl(Mea′w).
Then no element of Br is algebraic over Mea′wr.
But h ∈ acl(Mewr), so h(a′) is an algebraic element of Br over Mea′wr.
Contradiction.
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justification of the example: conclusion

Since both possible cases lead to a contradiction, h cannot be coded.
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modifications for ACVF

W = O/γm.

Case 1 res(w) /∈ acl(Me), where res(w) = res(x) for any x ∈ Aw.

Then also w /∈ acl(Mer). (Careful argument using C-minimality.)

Case 2 res(w) ∈ acl(Me)

Then r /∈ acl(Mew). (Careful argument using C-minimality.)

Each case leads to a contradiction, as the function picks out an algebraic
element of Aw (case 1) or Br (case 2).
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Questions

If A does not include the exponential and logarithm functions, does the
theory have EI to the sorts G?

What new sorts are required to eliminate imaginaries in the analytic
setting?
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