Around domination, orthogonality and parallelism in superstable MAECs

Pedro Zambrano - Universidad Nacional de Colombia - phzambranor@unal.edu.co

Joint work with Andrés Villaveces

Recent developments in Model Theory - Oléron (France) - June 5-11, 2011

Abstract

In this work we present some results on Geometric Stability Theory in superstable *Metric Abstract Elementary Classes*.

Metric AECs

Metric Abstract Elementary Classes (shortly MAEC) is the metric version of the notion of *Abstract Elementary Classes*.

Definition 0.1. Let \mathcal{K} be a class of L-structures (in the context of Continuous Logic) and $\prec_{\mathcal{K}}$ be a binary relation defined in \mathcal{K} . We say that $(\mathcal{K}, \prec_{\mathcal{K}})$ is a *Metric Abstract Elementary Class* (shortly *MAEC*) if:

1. \mathcal{K} and $\prec_{\mathcal{K}}$ are closed under isomorphism.

Superstability-like assumptions

Assumption 0.5 (superstability). For every \mathfrak{a} and every increasing and continuous $\prec_{\mathcal{K}}$ -chain of models $\langle M_i : i < \sigma \rangle$ and \mathcal{M}_j a resolution of M_j $(j < \sigma)$:

- 1. (continuity) If $p \upharpoonright M_i \perp \frac{M_0}{M_0} M_i$ for all $i < \sigma$, then $p \perp \frac{M_0}{M_0} \overline{\bigcup_{i < \sigma} M_i}$.
- 2. (locality) If $cf(\sigma) > \omega$, there exists $j < \sigma$ such that $a \perp \mathcal{M}_{j} \bigcup_{i < \sigma} M_{i}$.
- 3. (ε -simplicity) If $cf(\sigma) = \omega$, there exists $j < \sigma$ such that $a \perp \underset{M_j}{\varepsilon} \overline{\bigcup_{i < \sigma} M_i}$.

Fact 0.6 (Uniqueness of Limit Models). If M_i is a (μ, θ_i) -d-limit ($i \in \{1, 2\}$) over M where $dc(M_1) = dc(M_2)$, then $M_1 \cong_M M_2$.

Domination (3)

Corollary 0.12. Given (M, \mathcal{M}, a, N) such that $a \perp \underset{M_{\alpha}}{\mathcal{M}_{\alpha}} M$ for some $M_{\alpha} \in \mathcal{M}$, there exist N^* and a resolution \mathcal{M}^* which witnesses that M is a limit model over M_0 such that $a \bowtie_M^{\mathcal{M}^*} N^*$.

Weak Orthogonality

Definition 0.13. Let M be a limit model witnessed by $\mathcal{M} := \{M_i : i < \theta\}$, $p, q \in \text{ga-S}(M)$ be non-algebraic types such that $p, q \perp \underset{M_{\alpha}}{\overset{\mathcal{M}_{\alpha}}{\overset{\mathcal{M}}{\overset{\mathcal$

- 2. $\prec_{\mathcal{K}}$ is a partial order in \mathcal{K} .
- 3. If $M \prec_{\mathcal{K}} N$ then $M \subseteq N$.
- 4. (Completion of Union of Chains) If $(M_i : i < \lambda)$ is a $\prec_{\mathcal{K}}$ -increasing chain then
 - (a) the function symbols in L can be uniquely interpreted on the completion of $\bigcup_{i < \lambda} M_i$ in such a way that $\overline{\bigcup_{i < \lambda} M_i} \in \mathcal{K}$
 - (b) for each $j < \lambda$, $M_j \prec_{\mathcal{K}} \overline{\bigcup_{i < \lambda} M_i}$
 - (c) if each $M_i \prec_{\mathcal{K}} N$, then $\overline{\bigcup_{i < \lambda} M_i} \prec_{\mathcal{K}} N$.
- 5. (*Coherence*) if $M_1 \subseteq M_2 \prec_{\mathcal{K}} M_3$ and $M_1 \prec_{\mathcal{K}} M_3$, then $M_1 \prec_{\mathcal{K}} M_2$.
- 6. (DLS) There exists a cardinality $LS^{d}(K)$ (which is called the *metric Löwenheim-Skolem number*) such that if $M \in \mathcal{K}$ and $A \subseteq M$, then there exists $N \in \mathcal{K}$ such that $dc(N) \leq dc(A) + LS^{d}(K)$ and $A \subseteq N \prec_{\mathcal{K}} M$.

ε-splitting and s-independence

Definition 0.2 (ε -splitting). Let $N \prec_{\mathcal{K}} M$ and $\varepsilon > 0$. We say that ga-tp(\mathfrak{a}/M) ε -splits over N iff there exist N_1, N_2 with $N \prec_{\mathcal{K}} N_1, N_2 \prec_{\mathcal{K}} M$ and $h : N_1 \cong_N N_2$ such that $d(ga-tp(\mathfrak{a}/N_2), h(ga-tp(\mathfrak{a}/N_1)) \ge \varepsilon$. We use $\mathfrak{a} \sqcup_N^{\varepsilon} M$ to denote the fact that ga-tp(\mathfrak{a}/M) does not ε -split over N.

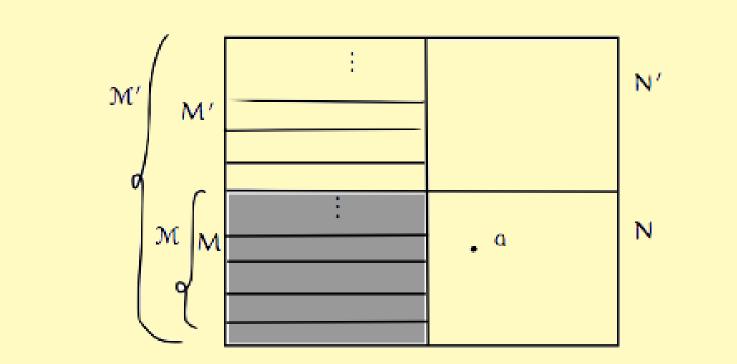
Proof. This is a consequence of assumption 0.5, following the same sketch of the proof given in [GrVaVi], but we have to point out that the details of the proof in this setting are quite different (see [ViZa2]). The key idea is to prove that given any $\theta < \mu^+$, there exists a (μ, θ) -limit model which is also a (μ, ω) -limit model.

Domination (1)

Throughout the rest of this poster, we suppose assumption 0.5, so uniqueness of limit models holds (fact 0.6).

Notation 0.7. $(M, \mathcal{M}, N, \mathfrak{a})$ means that $M \prec_{\mathcal{K}} N$, M is a limit model witnessed by \mathcal{M} and $\mathfrak{a} \in N \setminus M$.

Definition 0.8. We say that $(\mathcal{M}, \mathcal{M}, \mathsf{N}, \mathfrak{a}) \prec_{\mathsf{nf}} (\mathcal{M}', \mathcal{M}', \mathsf{N}', \mathfrak{a})$ iff \mathcal{M}' is a limit model over $\mathcal{M}, \mathcal{M} \subset \mathcal{M}'$ and \mathcal{M} corresponds to an initial segment of \mathcal{M}'), $\mathsf{N} \prec_{\mathcal{K}} \mathsf{N}'$ and $\mathfrak{a} \downarrow \overset{\mathcal{M}}{\mathcal{M}} \mathcal{M}'$.

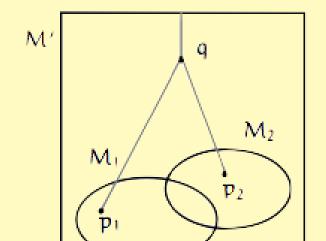


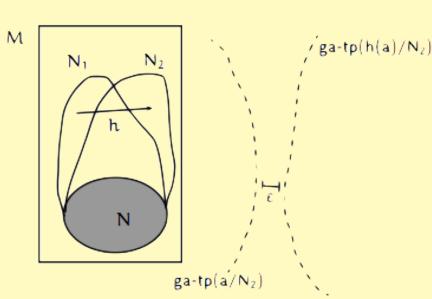
Strong Limit types

$$\begin{split} \textbf{Definition 0.14 (strong limit type). Let M be a σ-limit model} \\ \mathfrak{SE}(M) &\coloneqq \left\{ \begin{pmatrix} p, N \end{pmatrix} \colon \begin{array}{l} N \prec_{\mathcal{K}} M \\ N \text{ is a θ-limit model} \\ M \text{ is a limit model over N} \\ p \in \text{ga-S}(M) \text{ is non-algebraic} \\ and $p \downarrow \int_{N}^{\mathcal{N}} M \\ for \text{ some resolution \mathcal{N} of N.} \end{array} \right\} \end{split}$$

Parallelism of Strong Limit types (1)

Definition 0.15 (Parallelism). Two strong types $(p_1, N_1) \in \mathfrak{SL}(M_1)$ ($l \in \{1, 2\}$) are said to be *parallel* (which we denote by $(p_1, N_1) \parallel (p_2, N_2)$ iff for every $M' \succ_{\mathcal{K}} M_1, M_2$ with density character μ , there exists $q \in \text{ga-S}(M')$ which extends both p_1 and p_2 and $q \perp \underset{N_1}{\mathcal{N}_1}M'$ ($l \in \{1, 2\}$) (where \mathcal{N}_l is the resolution of N_l which satisfies $p_l \perp \underset{N_l}{\mathcal{N}_l}M_l$). If there is no any confusion, we denote it by $p_1 \parallel p_2$.





Definition 0.3. Let $N \prec_{\mathcal{K}} M$. Fix $\mathcal{N} := \langle N_i : i < \sigma \rangle$ a resolution of N. We say that a is *s*-independent from M over N relative to \mathcal{N} (denoted by a $\bigcup_{\substack{k \\ N i \in \varepsilon}} \mathcal{N} M$) iff for every $\varepsilon > 0$ there exists $i_{\varepsilon} < \sigma$ such that a $\bigcup_{\substack{k \\ N i \in \varepsilon}} M$.

Properties s-Independence

Under stability, s-independence satisfies nice properties (see [ViZa1])

- 1. Invariance: If $f \in Aut(\mathbb{M})$ and $a \bigcup_{N}^{\mathcal{N}} M$, then $f(a) \bigcup_{f[N]}^{f[\mathcal{N}]} f[M]$
- 2. Motonicity: If $a \perp \mathcal{M}_0^{\mathcal{M}_0} \mathcal{M}_3, \mathcal{M}_0 \prec_{\mathcal{K}} \mathcal{M}_1 \prec_{\mathcal{K}} \mathcal{M}_2 \prec_{\mathcal{K}} \mathcal{M}_3$ and $\mathcal{M}_0 \prec_{\mathcal{K}} \mathcal{M}_1$, then $a \perp \mathcal{M}_1^{\mathcal{M}_1} \mathcal{M}_2$.
- 3. Stationarity: If $a \perp \underset{N}{\overset{\mathcal{N}}{\underset{N}{}}}M$, M is universal over N and $M \prec_{\mathcal{K}} M'$, there exists $b \models \text{ga-tp}(\mathfrak{a}/M)$ such that $b \perp \underset{N}{\overset{\mathcal{N}}{\underset{N}{}}}M'$, and this extension is unique.

Definition 0.9. Given (M, \mathcal{M}, N, a) , we say that a *dominates* N over M relative to \mathcal{M} (denoted by $a \triangleright_{M}^{\mathcal{M}} N$) iff for every $(M', \mathcal{M}', N', a) \succ_{nf} (M, \mathcal{M}, N, a)$ we have that $N \downarrow \underset{M}{\mathcal{M}} \mathcal{M}'$ (i.e., for every $b \in N \ b \downarrow \underset{M}{\mathcal{M}} \mathcal{M}'$).

Domination (2)

Proposition 0.10. Given (M, \mathcal{M}, N, a) there exists $(M'\mathcal{M}', N', a) \succ_{nf} (M, \mathcal{M}, N, a)$ such that $a \triangleright_{M'}^{\mathcal{M}'} N'$.

Proof. Suppose not. This allows us to construct an \prec_{nf} -increasing and continuous sequence of tuples $\langle (M^{\alpha}, \mathcal{M}^{\alpha}, N^{\alpha}, a) : \alpha < \mu^{+} \rangle$ such that $(M^{0}, \mathcal{M}^{0}, N^{0}, a) := (\mathcal{M}, \mathcal{M}, N, a)$ and $(\mathcal{M}^{\alpha+1}, \mathcal{M}^{\alpha+1}, N^{\alpha}, a)$ witnesses that $(\mathcal{M}^{\alpha}, \mathcal{M}^{\alpha}, N^{\alpha}, a)$ does not satisfy that $a \triangleright_{\mathcal{M}^{\alpha}}^{\mathcal{M}^{\alpha}} N^{\alpha}$. Using locality (assumption 0.5 2.), continuity and monotonicity of s-independence, we get a contradiction.

Proposition 0.11. Suppose $(M, \mathcal{M}, N, a) \prec_{nf}$ $(M', \mathcal{M}', N', a)$, where M is a limit model (witnessed by $\mathcal{M} := \{M_i : i < \sigma\}$) and M' is a limit model over M (witnessed

Parallelism of Strong Limit types (2)

Fact 0.16. || *is an equivalence relation.*

- Fact 0.17. 1. Given $p, q \in ga-S(M)$, \mathcal{M} a resolution of M which witnesses that M is a limit model such that $p, q \perp \underset{M_{\alpha}}{\overset{\mathcal{M}{$
 - 2. If $N \succ_{\mathcal{K}} M$ is limit over M (and in particular over $M_{\alpha+1}$), given $p, q \in ga-S(N)$ such that $p, q \perp_{M_{\alpha}}^{\mathcal{M}_{\alpha}}N$, $p \perp^{wk} q$ iff $p \upharpoonright M \perp^{wk} q \upharpoonright M$.
 - 3. If $N \succ_{\mathcal{K}} M$ is limit over M (and in particular over M_1) and $p_1, p_2 \in ga-S(M)$ and $q_1, q_2 \in ga-S(N)$ satisfy $p_i \parallel q_i \ (i \in \{1, 2\})$, then $p_1 \perp^{wk} p_2$ iff $q_1 \perp^{wk} q_2$.

Proof of 2. Since M and N are limit models over $M_{\alpha+1}$, by corollary 0.6 there exists $f : M \cong_{M_{\alpha+1}} N$. Notice that $p \upharpoonright M_{\alpha+1} = f(p \upharpoonright M_{\alpha+1}) \subset f(p \upharpoonright M)$ and $q \upharpoonright M_{\alpha+1} =$ $f(q \upharpoonright M_{\alpha+1}) \subset f(q \upharpoonright M)$. Since $p \upharpoonright M_{\alpha+1} = f(p \upharpoonright M_{\alpha+1}) \, \bigcup_{M_{\alpha}} M_{\alpha+1}$ and $f(p \upharpoonright M) \supset p \upharpoonright M_{\alpha+1}$ satisfies $f(p \upharpoonright M) \, \bigcup_{M_{\alpha}} M_{\alpha} N$ (by monotonicity and invariance) and $p \, \bigcup_{M_{\alpha}} M_{\alpha} N$, then by stationarity (notice that $M_{\alpha+1}$ is univer-

4. Transitivity: Let $M_0 \prec_{\mathcal{K}} M_1 \prec_{\mathcal{K}} M_2$ be such that M_1 and M_0 are limit over some $M' \prec_{\mathcal{K}} M_0$ (witnessed by \mathcal{M}_0 and \mathcal{M}_1 respectively, where $\mathcal{M}_0 \subset \mathcal{M}_1$). Then $a \perp \underset{M_0}{\overset{\mathcal{M}_0}{\overset{\mathcal{M}_2}{\overset{\mathcal{M}_1}{\overset{\mathcal{M}_0}{\overset{\mathcal{M}_1}{\overset{\mathcal{M}_1}{\overset{\mathcal{M}_1}{\overset{\mathcal{M}_2}}}}} M_1$ and $a \perp \underset{M_1}{\overset{\mathcal{M}_1}{\overset{\mathcal{M}_1}{\overset{\mathcal{M}_2}}} M_2$.

5. Continuity: If $(b_n) \to b$ in \mathbb{M} and $b_n \coprod_N^N M$ for all $n < \omega$, then $b \coprod_N^N M$.

Superstability in first order theories

Fact 0.4. *Given* T *a first order theory, the following are equivalent:*

- 1. T is superstable
- 2. $\kappa(T) = \aleph_0$
- 3. Union of an \prec -increasing chain of saturated models is saturated.
- 4. Uniqueness (up to isomorphism) of limit models.

by \mathcal{M}''), $a \perp \underset{M_{\alpha}}{\overset{\mathcal{M}_{\alpha}}{\overset{}}} M$ for some limit $\alpha < \sigma$ and $a \triangleright_{\mathcal{M}'}^{\mathcal{M}'} N'$, where $\mathcal{M}' := \mathcal{M} \cup \mathcal{M}''$. Then, there exist N* and a resolution \mathcal{M}^* which witnesses that M is a limit model over M_0 such that $a \triangleright_{\mathcal{M}}^{\mathcal{M}^*} N^*$.

Proof. Let $p := \text{ga-tp}(\mathfrak{a}/\mathcal{M})$ and $p' := \text{ga-tp}(\mathfrak{a}/\mathcal{M}')$. It is straightforward to see that $\mathfrak{a} \perp \underset{M_{\alpha}}{\overset{\mathcal{M}_{\alpha}}{}} \mathcal{M}'$. Notice that \mathcal{M} and \mathcal{M}' are limit over $\mathcal{M}_{\alpha+1} \succ_{\mathcal{K}} \mathcal{M}_{\alpha}$. By fact 0.6, there exists $f: \mathcal{M}' \xrightarrow{\cong}_{\mathcal{M}_{\alpha+1}} \mathcal{M}$. By invariance, $f(\mathfrak{a}) \perp \underset{M_{\alpha}}{\overset{\mathcal{M}_{\alpha}}{}} \mathcal{M}$. Notice that $\mathcal{M}_{\alpha+1}$ is universal over \mathcal{M}_{α} . Therefore, since ga-tp $(\mathfrak{a}/\mathcal{M}_{\alpha+1}) = \text{ga-tp}(f(\mathfrak{a})/\mathcal{M}_{\alpha+1})$ and $\mathfrak{a}, f(\mathfrak{a}) \perp \underset{M_{\alpha}}{\overset{\mathcal{M}_{\alpha}}{}} \mathcal{M}$, by stationarity we may say ga-tp $(\mathfrak{a}/\mathcal{M}) = \text{ga-tp}(f(\mathfrak{a})/\mathcal{M})$. Let $g \in \text{Aut}(\mathbb{M}/\mathcal{M})$ be such that $(g \circ f)(\mathfrak{a}) = \mathfrak{a}$. Notice that $(g \circ f)(\mathcal{M}', \mathcal{M}', \mathcal{N}', \mathfrak{a}) = (\mathcal{M}, (g \circ f)[\mathcal{M}'], (g \circ f)[\mathcal{N}'], \mathfrak{a})$

satisfies a $\triangleright_{\mathcal{M}}^{\mathcal{M}^*} \mathbb{N}^*$, where $\mathbb{N}^* := (g \circ f)[\mathbb{N}']$ and $\mathcal{M}^* := (g \circ f)[\mathcal{M}'] = f[\mathcal{M}']$.

sal over M_{α}) we have that $f(p \upharpoonright M) = p$. In a similar way we can prove $f(q \upharpoonright M) = q$. By fact 0.17 (1) we have $\mathfrak{p} \upharpoonright \mathfrak{M} \perp^{wk} \mathfrak{q} \upharpoonright \mathfrak{M} \operatorname{iff} \mathfrak{p} \perp^{wk} \mathfrak{q}.$

References

- [GrVaVi] R. Grossberg, M. VanDieren and A. Villaveces, Uniqueness of Limit Models in Classes with Amalgamation, submitted.
- [Hi] Å. Hirvonen, *Categoricity in homogeneous complete metric spaces*, Ph.L thesis, University of Helsinki.
- [ViZa1] A. Villaveces and P. Zambrano, *Notions of independence for Metric Abstract Elementary Classes*. Accepted to the preprints of the Mittag-Leffler Institute. 2010.
- [ViZa2] A. Villaveces and P. Zambrano, *Limit Models in Metric Abstract Elementary Classes: Existence and Uniqueness.* Accepted to the pre-prints of the Mittag-Leffler Institute. 2010.
- [Za1x] P. Zambrano, Around superstability in Metric Abstract Elementary Classes. Ph.D. Thesis, Universidad Nacional de Colombia. In process.