Positive model theory in the footsteps of Ben Yaacov and Poizat

Mohammed Belkasmi Institut Camille Jordan, Université Claude Bernard Lyon 1

First-order logic without negation

Restricted set of logical connectives and quantifiers :

 $\wedge \;,\; \vee \;,\; \forall$

extended by the antilogy : \perp .

Positive first-order formulas in prenex normal form :

 $\exists \bar{y} \ f(\bar{x},\bar{y})$

with $f(\bar{x}, \bar{y})$ positive and quantifier-free. Special set of first-order sentences : *h*-inductive sentences :

 $\forall \bar{x} \; \exists \bar{y} f(\bar{x}, \bar{y}) \; \rightarrow \; \exists \bar{z} g(\bar{x}, \bar{z})$

with $f(\bar{x}, \bar{y}), g(\bar{x}, \bar{z})$ positive and quantifier-free. In prenex normal form,

 $\forall \bar{u} \exists \bar{v} \neg \phi(\bar{u}) \lor \psi(\bar{u}, \bar{v})$

with $\phi(\bar{u})$ et $\psi(\bar{u}, \bar{v})$ quantifier-free. Important special case, *h*-universal sentences : $\neg \exists \bar{u} \ \phi(\bar{u})$.

Same notions of model and consistancy, and a compactness theorem :

Theorem 1 (Ben Yaacov-Poizat (2006)) An h-inductive theory is consistant if and only if every finite subset of it is consistant.

A more general notion of embedding :

Definition 1 (Immersion) An mapping h from a structure of \mathcal{M} into a structure \mathcal{N} is an immersion if for every \overline{m} extracted from \mathcal{M} and positive first-order formula $\phi(\overline{x}), \mathcal{M} \models \phi(\overline{m})$ if and only if $\mathcal{N} \models \phi(h(\overline{m}))$.

Types

A special class of models of an h-inductive theory :

Definition 2 (PEC) A model \mathcal{M} of an h-inductive theory T is positively existentially closed ("pec" in short) if every homomorphism from \mathcal{M} into another model of T is an immersion.

Companions of an h-inductive theory T : theories having the same pec models as T.

- minimal companion : T_u , the *h*-universal consequences of T;
- maximal companion : T_k , the *h*-inductive consequences of *T*, its *Kaiser envelope*.

Companions have the same pec models. Types are realized in pec models :

Definition 3 (Type) An *n*-type of an *h*-inductive theory *T* is the set of positive first-order formulas realized by an *n*-tuple \bar{a} in a pec model of *T*. As usual, it is noted $S_n(T)$.

Fact 1 (Ben Yaacov-Poizat (2006)) A model A of an h-inductive theory T is pec if and only if for every n-tuple \bar{a} from A the set of positive formulas satisfied by \bar{a} is an n-type.

The set $S_n(T)$ is topologized using positive formulas. It is compact but not necessarily Hausdorff.

Fact 2 (Ben Yaacov-Poizat (2006)) Let T be an h-inductive theory. Then $S_n(T)$ is Hausdorff if and only if one can amalgamate the homomorphismes between models of the Kaiser envelope T_k : for every triple of models $\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3$ of T_k together with homomorphisms $f : \mathcal{M}_1 \longrightarrow$ \mathcal{M}_2 and $g : \mathcal{M}_1 \longrightarrow \mathcal{M}_3$, there exist $\mathcal{M}_4 \models T_k$ and homomorphisms hand k such that the following diagramme commutes :

$$\begin{array}{c} \mathcal{M}_1 \xrightarrow{f} \mathcal{M}_2 \\ g \downarrow & \downarrow h \\ \mathcal{M}_3 \xrightarrow{k} \mathcal{M}_4 \end{array}$$

Elementary extensions

Definition 4 (Poizat) Let \mathfrak{M} be structure. A positive elementary extension \mathfrak{N} of M is a pec model of $T_u(M)$ (equivalently, of $T_k(M)$), denoted $\mathfrak{M} \leq_+ \mathfrak{N}$.

The notations $T_u(M)$ and $T_k(M)$ mean that we allow parameters from the underlying set of \mathcal{M} . Similarly for $S_n(M)$.

Fact 3 (Poizat (2008)) If $\mathcal{M} \leq_+ \mathcal{N}$ and $S_n(N)$ is Hausdorff then so is $S_n(M)$.

Theorem 2 (Belkasmi (2009)) If $\mathcal{M} \leq_+ \mathcal{N}$ and $S_n(M)$ is Hausdorff then so is $S_n(N)$.

Towards eliminating quantifiers : positive Robinson theories

Definition 5 (Positive Robinson theory) An h-inductive theory T is said to be positive Robinson if the positive types are determined by their quantifier-free fragments.

Such theories can be characterized using special models :

Definition 6 (h-maximal models (Kungozhin (2011)) A model \mathcal{M} of an h-inductive theory T is h-maximal if every homomorphisme from \mathcal{M} into another model of T is an embedding.

Theorem 3 (Belkasmi (2011)) Let T be a positive Robinson theory. Then every model of T that embeds in a pec model of T is an h-maximal model of T. Moreover, the h-maximal models of T have the amalgamation property. If, in addition, T is h-universal, then the conditions are sufficient.

Quantifier elimination

Definition 7 An h-inductive theory T has the quantifier elimination property if, for \mathcal{A} and \mathcal{B} models of T, and \bar{a} and \bar{b} from \mathcal{A} and \mathcal{B} respectively, \bar{a} and \bar{b} satisfy the same positive formulas (in \mathcal{A} and \mathcal{B} respectively) if and only if they satisfy the same quantifier-free positive formulas.

Theorem 4 (Belkasmi (2011)) Let T be an h-universal theory. The the following are equivalent :

- 1. T has the quantifier elimination property.
- 2. Every model of T is weakly pec.
- 3. Every positive formula is equivalent modulo T to a quantifier-free positive formula.

A model \mathcal{M} of an *h*-inductive theory *T* is *weakly pec* if every embedding from \mathcal{M} into another model of *T* is an immersion. A model of *T* is pec if and only if it is weakly pec and *h*-maximal.

What's next?

Stability and simplicity in the context of positive logic

Références

- Itaï Ben Yaacov, Bruno Poizat. Fondements de la logique positive. Journal of Symbolic Logic, 72, 4, 1141-1162, 2007.
- [2] Itaï Ben Yaacov. Positive model theory and compact abstract theories. Journal of Mathematical Logic, no. 1, 85–118, 2003.
- [3] Bruno Poizat. Quelques effets pervers de la positivité. Annals of Pure and Applied Logic, no.6, 812-816,2010.
- [4] Bruno Poizat. Univers Positifs. Journal of Symbolic Logic, 71, 3, 969-976, 2006.
- [5] Anand Pillay Forking in the category of existentially closed structures Quaderni di Matematica, 6, Université de Naples.